Skip to main content Accessibility help

Inter-Satellite Link Enhanced Orbit Determination for BeiDou-3

  • Yufei Yang (a1) (a2), Yuanxi Yang (a3) (a4), Xiaogong Hu (a5), Jinping Chen (a2), Rui Guo (a2), Chengpan Tang (a5), Shanshi Zhou (a5), Liqian Zhao (a5) and Junyi Xu (a2)...


The third generation of the BeiDou navigation satellite system (BDS-3) is a global navigation system, and is expected to be in full operation by 2020. High-precision orbits are a precondition for BDS-3 to provide a highly accurate service, which needs a global tracking and monitoring capability for the operational satellites. However, it is difficult for BDS to construct global ground monitoring stations. Fortunately, Ka-band Inter-Satellite Link (ISL) antennae fitted to the BDS-3 satellites can be used to extend the visible arc of the Medium Earth Orbit (MEO) satellites and to enhance the ground stations for orbit determination. This paper analyses the ISL-enhanced orbit determination for eight BDS-3 satellites, using the data from ten Chinese domestic stations and 13 international Global Navigation Satellite System (GNSS) Monitoring and Assessment System (iGMAS) overseas stations. The results show that the Three-Dimensional (3D) position Root Mean Square (RMS) error of the Overlapping Orbit Differences (OODs) is approximately 1 m when only ten regional stations are used. When the ISL measurements are added, the 3D position RMS error is decreased to 0·5 m, and the accuracy of the 24-hour orbit prediction can also be improved from 2 m to 0·7 m, which is even better than that of the orbits determined using globally distributed stations. It can be expected that with the subsequent launch of BDS-3 satellites and the increasing number of ISLs, the advantage of the ISL enhanced orbit determination will become more significant.


Corresponding author



Hide All
Ananda, M. P., Bemstein, H., Cunlllgham, K. E., Feess, W. A., and Stroud, E. G. (1990). Global Positioning System (GPS) Autonomous Navigation. Location and Navigation Symposium. In Proceedings of IEEE Position. Las Vegas, Nevada: IEEE, 497–508.
Chen, J. P., Hu, X. G., Tang, C. P., Zhou, S. S., Guo, R., and Pan, J. Y. (2016a). Orbit determination and time synchronization for new-generation beidou satellites: preliminary results. Scientia Sinica (Physica, Mechanica & Astronomica), 46, 119502.
Chen, K. K., Xu, T. H., Yang, Y. G., Cai, H. L. and Chen, G. (2016b). Combination and assessment of GNSS clock products from iGMAS analysis centers. Acta Geodaetica Et Cartographica Sinica, 45(S2), 4653.
Fernández, F. A. (2011). Inter-satellite ranging and inter-satellite communication links for enhancing GNSS satellite broadcast navigation data. Advances in Space Research, 47(5), 786801.
Fisher, S.C. and Ghassemi, K. (1999). GPS IIF-the next generation. Proceedings of the IEEE. Seal Beach, CA, 24–47.
Guo, R., Hu, X. G., Tang, B., Huang, Y., Liu, L., and Cheng, L. C. (2010). Precise orbit determination for geostationary satellites with multiple tracking techniques. Chinese Science Bulletin, 55(8), 687692.
Kulik, S. V. (2001). Status and Development of GLONASS. First United Nations/United States of America Workshop on the Use of Global Navigation Satellite Systems, Kuala Lumpur, Malaysia, Aug.
Liu, J., Geng, T. and Zhao, Q. (2011). Enhancing precise orbit determination of compass with inter-satellite observations. Survey Review, 43(322), 333342.
Luba, O., Boyd, L., Gower, A. and Crum, J. (2005). GPS III system operations concepts. IEEE Aerospace and Electronic Systems Magazine, 20(1), 1018.
Maine, K. P., Anderson, P. and Langer, J. (2003). Crosslinks for the next-generation GPS. IEEE Aerospace Conference Proceedings, 4, 15891596.
Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P., and Nakamura, S. (2013). Initial assessment of the COMPASS/Beidou-2 regional navigation satellite system. GPS Solutions, 17(2), 211222.
Rajan, J. (2002). Highlights of GPS II-R Autonomous Navigation. Proceedings of Annual Meeting of the Institute of Navigation & CIGTF Guidance Test Symposium, 354–363.
Rajan, J., Brodie, P. and Rawicz, H. (2003a). Modernizing GPS autonomous navigation with anchor capability. Proceedings of International Technical Meeting of the Satellite Division of the Institute of Navigation, 1534–1542.
Rajan, J., Orr, M. and Wang, P. (2003b). On-Orbit Validation of GPS IIR Autonomous Navigation. Proceedings of the Institute of Navigation 59th Annual Meeting, 23–25 June, 411–419.
Ren, X., Yang, Y. X., Zhu, J., and Xu, T. H. (2017). Orbit Determination of the Next-Generation Beidou Satellites with Intersatellite Link Measurements and a Priori Orbit Constraints. Advances in Space Research, 60(10), 21552165.
Revnivykh, S. (2012). GLONASS status and modernization. Proceedings of ION GNSS 2012, Nashville, TN, 3931–3949.
Saastamoinen, J. (1972). Contributions to the theory of atmospheric refraction. Bulletin Géodésique, 105(1), 279298.
Springer, T. A., Beutler, G. and Rothacher, M. (1999). A new solar radiation pressure model for GPS satellites. GPS Solutions, 23, 5062.
Tang, C. P., Hu, X. G., Zhou, S. S., Liu, L., Pan, J. Y., and Chen, L. (2018), Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements. Journal of Geodesy, 2018(3–4), 115.
Tapley, B. D., Schutz, B. E. and Born, G. H. (1973). Statistical Orbit Determination Theory. Astrophysics and Space Science Library, 396425.
Wang, H. H., Xie, J. and Zhuang, J. L. (2017). Performance Analysis and Progress of Inter-satellite-link of Beidou System. Proceedings of the 30th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+2017), 25–29 Sep, Portland, Oregon.
Wen, Y. L., Zhu, J., Gong, Y. X., Wang, Q., and He, X. F. (2019). Distributed Orbit Determination for Global Navigation Satellite System with Inter-Satellite Link. Sensors, 19(5), 1031.
Wolf, R. (2000). Satellite orbit and ephemeris determination using inter satellite links. Dissertation for PhD. University of Munchen.
Xu, H. L., Wang, J. L. and Zhan, X. Q. (2012). Autonomous broadcast ephemeris improvement for GNSS using inter-satellite ranging measurements. Advances in Space Research, 49 ( 2012), 10341044.
Yang, D. N., Yang, J., Li, G., Zhou, Y., and Tang, C. P. (2017). Globalization highlight: orbit determination using BeiDou inter-satellite ranging measurements. GPS Solutions, 21(3), 13951404.
Yang, Y., Xu, Y., Li, J. and Yang, C. (2018). Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Science China Earth Sciences, 61, 614624.
Zhou, S. S., Hu, X. G. and Wu, B. (2010). Orbit determination and prediction accuracy analysis for a regional tracking network. Science in China Series G (Physics, Mechanics and Astronomy), 53(6), 11301138.


Related content

Powered by UNSILO

Inter-Satellite Link Enhanced Orbit Determination for BeiDou-3

  • Yufei Yang (a1) (a2), Yuanxi Yang (a3) (a4), Xiaogong Hu (a5), Jinping Chen (a2), Rui Guo (a2), Chengpan Tang (a5), Shanshi Zhou (a5), Liqian Zhao (a5) and Junyi Xu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.