Skip to main content Accessibility help
×
Home

Improvement to Multi-resolution Collective Detection in GNSS Receivers

  • Li Li (a1), Joon Wayn Cheong (a2), Jinghui Wu (a2) and Andrew G. Dempster (a2)

Abstract

Collective detection is a promising approach to positioning in a weak signal environment, in which the navigation solution is directly obtained by acquisition search in a multi-dimensional position and common clock bias uncertainty space. By combining the correlation values from multiple satellites and fully utilizing the coherence between them, the detectable C/N0 of individual satellites can be lowered. However, the lack of a computationally efficient optimization algorithm due to high dimensionality and complexity has hindered its application. A multi-resolution collective detection is therefore proposed to be a coarse-to-fine searching approach to solve for the position and common clock bias estimation. Although it reduces the computation time of collective detection, there is a gap in the efficiency study, which is the contribution of this research. The features of different levels of search in a multi-resolution algorithm are investigated. For a coarse search with large horizontal position step size, a smaller common clock bias step size is proposed instead of an averaging correlogram to reduce computation complexity as well as to obtain high time resolution. For the fine search with small horizontal space step size, a 3-D Dichotomous searching scheme is designed and applied to reduce the number of searching grids. Computer simulation results using experimental raw data are provided, to demonstrate the performance improvement against the conventional methods.

Copyright

Corresponding author

References

Hide All
Aboutanios, E. (2004). A Modified Dichotomous Search Frequency Estimator. IEEE Signal Processing Letter, 11, 186188.
Axelrad, P., Bradely, B.K., Donna, J., Mitchell, M. and Mohiuddin, S. (2011). Collective Detection and Direct Positioning Using Multiple GNSS Satellites. The Journal of the Institute of Navigation, 58, 305321.
Borio, D., Camoriano, L. and Presti, L.L. (2008). Impact of GPS Acquisition Strategy on Decision Probabilities. IEEE Transactions on Aerospace and Electronic Systems, 44, 9961011.
Bradley, B.K. and Axelrad, P. (2010). Performance Analysis of Collective Detection of Weak GPS signals. Proceeding of the 2010 International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon, Portland.
Cheong, J.W. (2010). Towards Multi-Constellation Collective Detection for Weak Signals: A Comparative Experimental Analysis. Proceeding of the 2010 International Technical Meeting of the Satellite Division of the Institute of Navigation, Oregon, Portland.
Cheong, J.W., Wu, J., Dempster, A.G. and Rizos, C. (2011). Efficient Implementation of Collective Detection. Proceeding of IGNSS Symposium 2011, Sydney, Australia.
Cheong, J.W., Wu, J. and Dempster, A.G. (2012). Assisted-GPS based Snap-shot GPS Receiver with FFT-accelerated Collective Detection: Time Synchronisation and Search Space Analysis. Proceeding of the 2012 International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, Tennessee, USA.
Closas, P., Fernandez-Prades, C. and Fernandez-Rubio, J.A. (2007). ML Estimation of Position in a GNSS Receiver using the SAGE Algorithm. Proceeding of 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, Hawai, USA.
DiEsposti, R. (2007). GPS PRN Code Signal Processing and Receiver Design for Simultaneous All-in-view Coherent Signal Acquisition and Navigation Solution Determination. Proceeding of the 2007 National Technical Meeting of The Institute of Navigation, San Diego, CA.
Gernot, C., O'Keefe, K. and Lachapelle, G. (2008). Comparison of L1 C/A-L2C Combined Acquisition Techniques. Proceeding of European Navigation Conference, Toulouse, France.
Robert, M.L., Virginia, T. and Michael, W.T. (2000). Direct Search Methods: Then and Now. Journal of Computational and Applied Mathematics, 124, 191207.
Margaria, D., Dovis, F. and Mulassano, P. (2008). Galileo AltBOC Signal Multiresolution Acquisition Strategy. IEEE Aerospace and Electronic Systems Magazine, 23, 410.
Zakharov, Y.V. and Tozer, T.C. (1999). Frequency Estimator with Dichotomous Search of Periodogram Peak. Electronics Letters, 35, 16081609.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed