Skip to main content Accessibility help
×
Home

Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data

  • Ke Su (a1) (a2) and Shuanggen Jin (a1) (a3)

Abstract

Tropospheric delay is one of the main error sources in Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP). Zenith Hydrostatic Delay (ZHD) accounts for 90% of the total delay. This research focuses on the improvements of ZHD from tropospheric models and real meteorological data on the PPP solution. Multi-GNSS PPP experiments are conducted using the datasets collected at Multi-GNSS Experiments (MGEX) network stations. The results show that the positioning accuracy of different GNSS PPP solutions using the meteorological data for ZHD correction can achieve an accuracy level of several millimetres. The average convergence time of a PPP solution for the BeiDou System (BDS), the Global Positioning System (GPS), Global Navigation Satellite System of Russia (GLONASS), BDS+GPS, and BDS+GPS+GLONASS+Galileo are 55·89 min, 25·88 min, 33·30 min, 20·50 min and 15·71 min, respectively. The results also show that atmospheric parameters provided by real meteorological data have little effect on the horizontal components of positioning compared to the meteorological model, while in the vertical component, the positioning accuracy is improved by 90·6%, 33·0%, 22·2% and 19·8% compared with the standard atmospheric model, University of New Brunswick (UNB3m) model, Global Pressure and Temperature (GPT) model, and Global Pressure and Temperature-2 (GPT2) model and the convergence times are decreased 51·2%, 32·8%, 32·5%, and 32·3%, respectively.

Copyright

Corresponding author

References

Hide All
Böhm, J., Heinkelmann, R. and Schuh, H. (2007). Short note: a global model of pressure and temperature for geodetic applications. Journal of Geodesy, 81(10), 679683.
Cai, C., Gao, Y., Pan, L. and Zhu, J. (2015). Precise point positioning with quad-constellations: GPS, BeiDou, GLONASS and Galileo. Advances in Space Research, 56(1), 133143.
Collins, J. P. and Langley, R. B. (1997). A tropospheric delay model for the user of the wide area augmentation system. Department of Geodesy and Geomatics Engineering, University of New Brunswick.
Collins, J. P. and Langley, R. B. (1999). Nominal and extreme error performance of the UNB3 tropospheric delay model. Department of Geodesy and Geomatics Engineering, University of New Brunswick, 173pp.
Ding, W., Teferle, F. N., Kazmierski, K., Laurichesse, D. and Yuan, Y. (2017). An evaluation of real-time troposphere estimation based on GNSS Precise Point Positioning. Journal of Geophysical Research: Atmospheres, 122(5), 27792790.
Hadas, T., Kaplon, J., Bosy, J., Sierny, J. and Wilgan, K. (2013). Near-real-time regional troposphere models for the GNSS precise point positioning technique. Measurement Science and Technology, 24(5), 055003.
Hadas, T., Teferle, F. N., Kazmierski, K., Hordyniec, P. and Bosy, J. (2017). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solutions, 21(3), 10691081.
Hopfield, H.S. (1969). Two-quartic tropospheric refractivity profile for correcting satellite data. Journal of Geophysical Research, 74(18), 44874499.
Jin, S.G., Han, L. and Cho, J. (2011). Lower atmospheric anomalies following the 2008 Wenchuan Earthquake observed by GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 73(7–8), 810814, doi: 10.1016/j.jastp.2011.01.023.
Jin, S.G., Li, Z.C. and Cho, J.H. (2008). Integrated water vapor field and multi-scale variations over China from GPS measurements. Journal of Applied Meteorology and Climatology, 47(11), 30083015, doi: 10.1175/2008JAMC1920.1.
Jin, S.G., Luo, O.F. and Gleason, S. (2009). Characterization of diurnal cycles in ZTD from a decade of global GPS observations. Journal of Geodesy, 83(6), 537545, doi: 10.1007/s00190-008-0264-3.
Jin, S.G., Luo, O.F. and Ren, C. (2010). Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Advances in Space Research, 46(2), 190195, doi: 10.1016/j.asr.2010.01.017.
Jin, S.G., and Park, P.H. (2006). Strain accumulation in South Korea inferred from GPS measurements. Earth, Planets and Space, 58(5), 529534, doi: 10.1186/BF03351950.
Jin, S.G., Wang, J., Zhang, H. and Zhu, W.Y. (2004). Real-time monitoring and prediction of the total ionospheric electron content by means of GPS observations, Chinese Astronomy and Astrophysics, 28(3), 331337, doi: 10.1016/j.chinastron.2004.07.008.
Kouba, J. (2009). Testing of global pressure/temperature (GPT) model and global mapping function (GMF) in GPS analyses. Journal of Geodesy, 83(3), 199208.
Lagler, K., Schindelegger, M., Böhm, J., Krásná, H. and Nilsson, T. (2013). GPT2: Empirical slant delay model for radio space geodetic techniques. Geophysical research letters, 40(6), 10691073.
Leandro, R., Santos, M. C. and Langley, R. B. (2006). UNB neutral atmosphere models: development and performance. In Proceedings of ION NTM. 2006, 52(1), 564–73.
Leandro, R. F., Langley, R. B. and Santos, M. C. (2008). UNB3m_pack: a neutral atmosphere delay package for radiometric space techniques. GPS Solutions, 12(1), 6570.
Rizos, C., Montenbruck, O., Weber, R., Weber, G., Neilan, R. and Hugentobler, U. (2013). The IGS MGEX experiment as a milestone for a comprehensive multi-GNSS service. In: Proceedings of the ION 2013 Pacific PNT Meeting (ION-PNT-2013), April 23–25, Honolulu, Hawaii, USA, 289295.
Saastamoinen, J. (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use of Artificial Satellites for Geodesy, 15(6), 247251.
Steigenberger, P., Boehm, J. and Tesmer, V. (2009). Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading. Journal of Geodesy, 83(10), 943951.
Swanson, G. S. and Trenberth, K. E. (1981). Trends in the Southern Hemisphere tropospheric circulation. Monthly Weather Review, 109(9), 18791889.
Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjoberg, L., Novak, P. and Jin S.G. (2015). Analysis of the refined CRUST1.0 crustal model and its gravity field. Survey Geophysics, 36(1), 139165, doi: 10.1007/s10712-014-9299-6.
Trenberth, K. E. (1981). Seasonal variations in global sea level pressure and the total mass of the atmosphere. Journal of Geophysical Research: Oceans, 86(C6), 52385246.
Witchayangkoon, B. (2000). Elements of GPS Precise Point Positioning. Ph.D. dissertation, Department of Spatial Information Science and Engineering, University of Maine, Orono, Maine, U.S.A.
Yao, Y., He, C., Zhang, B. and Xu, C. (2013). A new global zenith tropospheric delay model GZTD. Chinese Journal of Geophysics-Chinese Edition, 56(7), 22182227.
Zhang, H., Yuan, Y., Li, W., Li, Y. and Chai, Y. (2016). Assessment of three tropospheric delay models (IGGTROP, EGNOS and UNB3M) based on precise point positioning in the Chinese region. Sensors, 16(1), 122.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, 102(B3), 50055017.

Keywords

Improvement of Multi-GNSS Precise Point Positioning Performances with Real Meteorological Data

  • Ke Su (a1) (a2) and Shuanggen Jin (a1) (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed