Skip to main content Accessibility help
×
Home

High-Integrity GPS/INS Integrated Navigation with Error Detection and Application to LAAS

  • Fang-Cheng Chan (a1) and Boris Pervan (a1)

Abstract

A dynamic state realization for tightly coupling Global Positioning System (GPS) measurements with an Inertial Navigation System (INS) is described. The realization, based on the direct fusion of GPS and INS systems through Kalman filter state dynamics, explicitly accounts for temporal and spatial decorrelation of GPS measurement errors (such as tropospheric, ionospheric, and multipath errors) through state augmentation, thereby ensuring Kalman filter integrity under fault-free error conditions. Predicted system performance for a Local Area Augmentation System (LAAS) aircraft precision approach application is evaluated using covariance analysis and validated with flight data.

Built-in fault detection mechanisms based on the Kalman filter innovations are also evaluated to help provide integrity under certain fault conditions. It is shown that an algorithm based on the integral of Kalman filter innovations outperforms other existing GPS fault detection methods in the detection of slowly developing ranging errors, such as those caused by ionospheric and tropospheric anomalies.

Copyright

Corresponding author

References

Hide All
Cunningham, J. R. and Lewantowicz, Z. H. (1988). Dynamic Interaction of Separate INS/GPS Kalman Filters (Filter – Driving – Filter Dynamics). Proceeding of ION GPS 1988, Colorado Springs, CO.
Colombo, O. L., Bhapkar, U. V. and Evans, A. G. (1999). Inertial-Aided Cycle-Slip Detection/Correction for Precise, Long-Baseline Kinematic GPS. Proceedings ION GPS 1999, Nashville, TN.
Farrell, J. L. (2002–2003). GPS/INS-Streamlined. NAVIGATION: Journal of The Institute of Navigation, vol. 49, no. 4.
Gao, Y., Krakiwsky, E. J., Abousalem, M. A. and McLellan, J. F. (1993). Comparison and Analysis of Centralized, Decentralized, and Federated Filters. NAVIGATION: Journal of The Institute of Navigation, vol. 40, no. 1.
Gebre-Egziahber, D. (2001). Design and Performance Analysis of a Low-Cost Aided Dead Reckoning Navigator. Stanford University Ph.D. Dissertation, Department of Aeronautics and Astronautics, Stanford, California.
Gratton, L. and Pervan, B. (2006). Carrier Phase Airborne and Ground Monitors for Ionospheric Front Detection for Category III LAAS. Proceedings of ION GNSS 2006, Fort Worth, TX.
Groves, P. D. (2008). Principle of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House.
Heo, M.-B., Pervan, B., Pullen, S., Gautier, J., Enge, P. and Gebre-Egziabher, D. (2004). Autonomous Fault Detection with Carrier-Phase DGPS for Shipboard Landing Navigation. NAVIGATION: Journal of Institute of Navigation, Vol. 51, No. 3, pp. 185197.
Heo, M.-B. and Pervan, B. (2006). Carrier Phase Navigation Architecture for Shipboard Relative GPS. IEEE Transactions on Aerospace and Electronic Systems, 42·2, pp. 2629.
Huang, J. and van Graas, F. (2006). Comparison of Tropospheric Decorrelation Errors in the Presence of Severe Weather Conditions in Different Areas and Over Different Baseline Lengths. Proceedings of ION GNSS 2006, Fort Worth, TX.
Jekeli, C. (2001). Inertial Navigation Systems with Geodetic applications. Berlin, New York, Walter de Gruyter.
Johnson, G. B. and Lewantowicz, Z. H. (1990). Closed-Loop Operation of GPS Aided INS. Proceedings of ION GPS 1990, Colorado Springs, CO.
Ko, P.-Y. (2000). GPS-Based Precision Approach and Landing Navigation: Emphasis on Inertial and Pseudolite Augmentation and Differential Ionosphere Effect. Stanford University Ph.D. Dissertation, Department of Aeronautics and Astronautics, Stanford, California.
Lawrence, D. G. (1996). Aircraft Landing Using GPS: Development and Evaluation of a Real Time System for Kinematic Position using the Global Positioning System. Stanford University Ph.D. Dissertation, Department of Aeronautics and Astronautics, Stanford, California.
Luo, M., Pullen, S., Ene, A., Qiu, D., Walter, T. and Enge, P. (2004). Ionosphere Threat to LAAS: Updated Model, User Impact and Mitigations. Proceeding of ION GNSS 2004, Long beach, California.
Lee, Y. C. and O'Laughlin, D. G. (1999). A Performance Analysis of a Tightly Coupled GPS/Inertial System for Two Integrity Monitoring Methods. Proceedings of ION GPS 1999, Nashville, TN.
Lee, J., Luo, M. and Pullen, S. (2006). Position-Domain Geometry Screening to Maximize LAAS Availability in the Presence of Ionosphere Anomalies. Proceeding of ION GNSS 2006, Fort Worth, Texas.
Marty, F. and Pagnucco, S. (1992). Development of Small Embedded GPS/INS RLG and FOG Systems for the 90' and Beyond. Proceedings of ION National Technical conference, San Diego, CA.
McGraw, G., Murphy, T., Brenner, M., Pullen, S. and Van Dierendonck, A. J. (2000). Development of the LAAS Accuracy Models. Proceedings of ION GPS 2000, Salt Lake City, UT.
Moafipoor, S., Brzezinska, D. G. and Toth, C. K. (2004). Tightly Coupled GPS/INS/CCD Integration Based on GPS Carrier Phase Velocity Update. Proceedings of the 2004 National Technical Meeting of the Institute of Navigation, San Diego, California.
Pervan, B., Chan, F.-C., Gebre-Egziabher, D., Pullen, S., Enge, P. and Colby, G. (2003). Performance Analysis of Carrier-Phase DGPS Navigation for Shipboard Landing of Aircraft. NAVIGATION: Journal of Institute of Navigation, vol. 50, no. 3.
RTCA Special Committee 159 (2004). Minimum Aviation System Performance Standards for The Local Area Augmentation System. RTCA Document Number DO-245A.
RTCA Special Committee 159 Working Group 2 (2006). Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment. RTCA Document Number DO-229D.
Scherzinger, B. M. (2000). Precise Robust Positioning with Inertial/GPS RTK. Proceedings of ION GPS 2001, Salt Lake City, UT.
Soltz, J. A., Donna, J. I. and Greenspan, R. L. (1988–1989). An Option for Mechanizing Integrated GPS/INS Solutions. NAVIGATION: Journal of The Institute of Navigation, vol. 35, no. 4, pp. 443458.
Titterton, D. and Weston, J. L. (2004). Strapdown Inertial Navigation Technology. The American Institute of Aeronautics and Astronauticcs.
US DoT FAA (2002). Category I Local Area Augmentation System Ground Facility, FAA-E-2937A.

Keywords

High-Integrity GPS/INS Integrated Navigation with Error Detection and Application to LAAS

  • Fang-Cheng Chan (a1) and Boris Pervan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed