Skip to main content Accessibility help
×
Home

A High-accuracy Extraction Algorithm of Planet Centroid Image in Deep-space Autonomous Optical Navigation

  • Siliang Du (a1) (a2), Mi Wang (a2), Xiao Chen (a3), Shenghui Fang (a1) and Hongbo Su (a4)...

Abstract

A planet centroid is an important observable object in autonomous optical navigation. A high-accuracy algorithm is presented to extract the planet centroid from its raw image. First, we proposed a planet segmentation algorithm to segment the planet image block to eliminate noise and to reduce the computation load. Second, we developed an effective algorithm based on Prewitt-Zernike moments to detect sub-pixel real edges by determining possible edges with the Prewitt operator, removing pseudo-edges in backlit shady areas, and relocating real edges to a sub-pixel accuracy in the Zernike moments. Third, we proposed an elliptical model to fit sub-pixel edge points. Finally, we verified the performance of this algorithm against real images from the Cassini-Huygens mission and against synthetic simulated images. Simulation results showed that the accuracy of the planet centroid is up to 0·3 pixels and that of the line-of-sight vector is at 2·1 × 10−5 rad.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A High-accuracy Extraction Algorithm of Planet Centroid Image in Deep-space Autonomous Optical Navigation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A High-accuracy Extraction Algorithm of Planet Centroid Image in Deep-space Autonomous Optical Navigation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A High-accuracy Extraction Algorithm of Planet Centroid Image in Deep-space Autonomous Optical Navigation
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Betto, M., Rgensen, J.L.J., Rgensen, P.S.J. and Denver, T. (2006). Advanced stellar compass deep space navigation, ground testing results. Acta Astronautica, 59(8–11), 10201028.
Celestia. (2015). The Celestia Motherlode, http://www.celestiamotherlode.net/.
Christian, J.A. and Lightsey, E.G. (2012). Onboard Image-Processing Algorithm for a Spacecraft Optical Navigation Sensor System. Journal of Spacecraft and Rockets, 49(2), 337352.
Ding, L.J. and Goshtasby, A. (2001). On the Canny edge detector. Pattern Recognition, 34(3), 721725.
Fitzgibbon, A., Pilu, M. and Fisher, R.B. (1999.) Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476480.
Ghosal, S. and Mehrotra, R. (1993). Orthogonal moment operators for subpixel edge detection, Pattern Recognition, 26(2), 295306.
Giannitrapani, A., Ceccarelli, N., Scortecci, F. and Garulli, A. (2011). Comparison of EKF and UKF for Spacecraft Localization via Angle Measurements. IEEE Transactions on Aerospace and Electronic Systems, 47(1), 7584.
Haralick, R.M., Sternberg, S.R. and Zhuang, X. (1987). Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(4), 532550.
Hermosilla, T., Bermejo, E., Balaguer, A. and Ruiz, L.A. (2008). Non-linear fourth-order image interpolation for subpixel edge detection and localization. Image and Vision Computing, 26(9), 12401248.
Hou, Z.J. and Wei, G.W. (2002). A new approach to edge detection. Pattern Recognition, 35(7), 15591570.
Iess, L., Asmar, S. and Tortora, P. (2009). MORE: An advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astronautica, 65(5–6), 666675.
Javidi, B., Li, J., Fazlollahi, A.H. and Horner, J. (1995). Binary nonlinear joint transform correlator performance with different thresholding methods under unknown illumination conditions. Applied Optics, 34(5), 886896.
Kemper, P. J. (1998). Mathematical morphology enhancement of maximum entropy thresholding for small targets, Bellingham: Spie-Int Soc Optical Engineering, 8491.
Kuo, Y.H., Lee, C.S. and Liu, C.C. (1997). A new fuzzy edge detection method for image enhancement. Proceedings Of The Sixth IEEE International Conference on Fuzzy Systems, Vols I - III, 10691074.
Li, S., Lu, R.K., Zhang, L. and Peng, Y. M. (2013). Image Processing Algorithms For Deep-Space Autonomous Optical Navigation. Journal of Navigation, 66(4), 605623.
Ma, X., Fang, J. and Ning, X. (2013). An overview of the autonomous navigation for a gravity-assist interplanetary spacecraft. Progress in Aerospace Sciences, 63(0), 5666.
Marini, A.E., Racca, G.D. and Foing, B.H. (2002). SMART-1 technology preparation for future planetary missions. Advances in Space Research, 30(8), 18951900.
Ning, X. and Fang, J. (2009). A new autonomous celestial navigation method for the lunar rover. Robotics and Autonomous Systems, 57(1), 4854.
Owen, W.M. (2011). Methods Of Optical Navigation, San Diego: Advances in the Astronautical Sciences, 140, 16351653.
Owen, W.M., Duxbury, T.C., Acton, C.H., Synnott, S.P., Riedel, J.E. and Bhaskaran, S. (2008). A Brief History of Optical Navigation At JPL, San Diego: American Astronautical Society, 131, 329348.
Rathsman, P., Kugelberg, J., Bodin, P., Racca, G.D., Foing, B. and Stagnaro, L. (2005). SMART-1: Development and lessons learnt. Acta Astronautica, 57(2–8), 455468.
Rudd, R.P., Hall, J.C. and Spradlin, G.L. (1997). The voyager interstellar mission. Acta Astronautica, 40(2–8), 383396.
Shuang, L. and Cui, P.Y. (2008). Landmark tracking based autonomous navigation schemes for landing spacecraft on asteroids. Acta Astronautica, 62(6–7), 391403.
Thompson, D.R., Bunte, M., Castano, R., Chien, S. and Greeley, R. (2012). Image processing onboard spacecraft for autonomous plume detection. Planetary and Space Science, 62(1), 153159.
Wang, X., (2007). Laplacian operator-based edge detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 881886.
Wee, C. and Paramesran, R. (2007). On the computational aspects of Zernike moments. Image and Vision Computing, 25(6), 967980.
Ye, J., Fu, G. and Poudel, U.P. (2005). High-accuracy edge detection with Blurred Edge Model. Image and Vision Computing, 23(5), 453467.
Ying-Dong, Q., Cheng-Song, C., San-Ben, C. and Jin-Quan, L. (2005). A fast subpixel edge detection method using Sobel–Zernike moments operator. Image and Vision Computing, 23(1), 1117.
Yu, M., Cui, H. and Tian, Y. (2014). A new approach based on crater detection and matching for visual navigation in planetary landing. Advances in Space Research, 53(12), 1810–21.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed