Skip to main content Accessibility help
×
Home

GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning

  • Altti Jokinen (a1), Shaojun Feng (a1), Wolfgang Schuster (a1), Washington Ochieng (a1), Chris Hide (a2), Terry Moore (a2) and Chris Hill (a2)...

Abstract

The Precise Point Positioning (PPP) concept enables centimetre-level positioning accuracy by employing one Global Navigation Satellite System (GNSS) receiver. The main advantage of PPP over conventional Real Time Kinematic (cRTK) methods is that a local reference network infrastructure is not required. Only a global reference network with approximately 50 stations is needed because reference GNSS data is required for generating precise error correction products for PPP. However, the current implementation of PPP is not suitable for some applications due to the long time period (i.e. convergence time of up to 60 minutes) required to obtain an accurate position solution. This paper presents a new method to reduce the time required for initial integer ambiguity resolution and to improve position accuracy. It is based on combining GPS and GLONASS measurements to calculate the float ambiguity positioning solution initially, followed by the resolution of GPS integer ambiguities.

The results show that using the GPS/GLONASS float solution can, on average, reduce the time to initial GPS ambiguity resolution by approximately 5% compared to using the GPS float solution alone. In addition, average vertical and horizontal positioning errors at the initial ambiguity resolution epoch can be reduced by approximately 17% and 4%, respectively.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      GLONASS Aided GPS Ambiguity Fixed Precise Point Positioning
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Abdel-salam, M. (2005). Precise Point Positioning using un-differenced code and carrier phase observations. PhD thesis. University of Calgary.
Banville, S. and Langley, R. B. (2009). Improving Real-Time Kinematic PPP with Instantaneous Cycle-Slip Correction. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, Georgia, USA.
Bisnath, S. and Gao, Y. (2007). Current state of precise point positioning and future prospects and limitations. Observing our changing Earth International Association of Geodesy Symposia, 133, 615623.
Boehm, J., Niell, A., Tregoning, P. & Schuh, H. (2006). Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters, 33.
Chen, G. & Herring, T. A. (1997). Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data. Journal of Geophysical Research, 102, 20, 489–20, 502.
CNES. (2012). PPP Wizard. http://www.ppp-wizard.net/products/ Accessed 17 December 2012.
Collins, P. (2008). Isolating and Estimating Undifferenced GPS Integer Ambiguities. Proceedings of the 2008 National Technical Meeting of The Institute of Navigation. San Diego, California, USA.
Collins, P., Lahaye, F., Heroux, P. & Bisnath, S. (2008). Precise Point Positioning with Ambiguity Resolution using the Decoupled Clock Model. Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). Savannah, Georgia, USA.
Dach, R., Hugentobler, U., Fridez, P. and Meindl, M. (2007). Bernese GPS Software Version 5.0 User Manual.
Dong, D. and Bock, Y. (1989). Global Positioning System Network Analysis With Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California. Journal of Geophysical research, 94, 39493966.
Feng, S., Ochieng, W., Moore, T., Hill, C. and Hide, C. (2009). Carrier phase-based integrity monitoring for high-accuracy positioning. GPS Solutions, 13, 1322.
Feng, S., Ochieng, W., Samson, J., Tossaint, M., Hernandez-Pajares, M., Juan, J. M., Sanz, J., Aragón-Àngel, À., Ramos-Bosch, P. and Jofre, M. (2012). Integrity Monitoring for Carrier Phase Ambiguities. Journal of Navigation, 65, 4158.
GDC. (2012). GNSS Data Center. http://igs.bkg.bund.de/ Accessed 17 December 2012.
Geng, J., Teferle, F. N., Meng, X. and Dodson, A. H. (2010). Towards PPP-RTK: Ambiguity resolution in real-time precise point positioning. Advances in Space Research, 47, 16641673.
Heroux, P., Caissy, M. and Gallace, J. (1993). Canadian Active Control System Data Acquisition and Validation. IGS Workshop. University of Berne, Berne, Switzerland.
IGS. (2009). IGS Products http://igscb.jpl.nasa.gov/components/prods.html Accessed 17 December 2012.
ITRF. (2012). The International Terrestrial Reference Frame (ITRF). http://itrf.ensg.ign.fr/ Accessed 17 December 2012.
Jokinen, A., Feng, S., Milner, C., Schuster, W., Ochieng, W., Hide, C., Moore, T. and Hill, C. (2011). Precise Point Positioning and Integrity Monitoring with GPS and GLONASS. European Navigation Conference 2011. London, UK.
Jokinen, A., Feng, S., Ochieng, W., Milner, C., Schuster, W., Hide, C., Moore, T. and Hill, C. (2012). Fixed ambiguity Precise Point Positioning (PPP) with FDE RAIM. Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION. Myrtle Beach, South Carolina, USA.
Jonge, P. D. and Tiberius, C. (1996). The LAMBDA method for integer ambiguity estimation: implementation aspects. Publications of the Delft Geodetic Computing Centre, 12.
Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82, 3545.
Kaplan, E. D. and Hegarty, C. J. (2006). Understanding GPS principles and applications. Second edition. Artech House, Inc.
Kouba, J. (2009a). Guide to using International GNSS service (IGS) products.
Kouba, J. (2009b). A simplified yaw-attitude model for eclipsing GPS satellites. GPS Solutions, 13, 112.
Laurichesse, D. (2011). The CNES Real-time PPP with undifferenced integer ambiguity resolution demonstrator. Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011). Portland, Oregon, USA.
Laurichesse, D., Mercier, F., Berthias, J. P. and Bijac, J. (2008). Real Time Zero-difference Ambiguities Blocking and Absolute RTK. Proceedings of the 2008 National Technical Meeting of The Institute of Navigation. San Diego, California, USA.
Leandro, R., Santos, M. and Langley, R. B. (2006). UNB Neutral Atmosphere Models: Development and Performance. Proceedings of the 2006 National Technical Meeting of The Institute of Navigation (ION NTM 2006). Monterey, California, USA.
Liu, Z. (2011). A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver. Journal of Geodesy, 85, 171183.
Melbourne, W. G. (1985). The Case for Ranging in GPS Based Geodetic Systems. Proceedings of the 1st International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland, USA.
Reussner, N. and Wanninger, L. (2011). GLONASS Inter-frequency Biases and Their Effects on RTK and PPP Carrier-phase Ambiguity Resolution. Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011). Portland, Oregon, USA.
Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Part II. Refraction Corrections in Satellite Geodesy. Bulletin Géodésique, 107.
Schuster, W., Bai, J., Feng, S. and Ochieng, W. (2012). Integrity monitoring algorithms for airport surface movement. GPS Solutions, 16, 6575.
Takasu, T. (2012). RTKLIB: An Open Source Program Package for GNSS Positioning. http://www.rtklib.com/ Accessed 17 December 2012.
Teunissen, P. J. G. and Verhagen, S. (2008). GNSS Carrier Phase Ambiguity Resolution: Challenges and Open Problems. Observing our changing Earth International Association of Geodesy Symposia, 133, 785792.
Urquhart, L. (2009). Atmospheric Pressure Loading and its Effects on Precise Point Positioning. Proceedings of the 22nd International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2009). Savannah, Georgia, USA.
Wu, J. T., Wu, S. C., Hajj, G. A., Bertiger, W. I. and Lichten, S. M. (1992). Effects of antenna orientation on GPS carrier phase. Astrodynamics, 18, 9198.
Wubbena, G. (1985). Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements. Proceedings First International Symposium on Precise Positioning with the Global Positioning System. Rockville, Maryland, USA.
Zumberge, J. F., Heftin, M. B., Jefferson, D. C., Watkins, M. M. and Webb, F. H. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, 50055017.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed