Skip to main content Accessibility help
×
Home

Characterisation of GNSS Space Service Volume

  • Shuai Jing (a1), Xingqun Zhan (a1), Jun Lu (a2), Shaojun Feng (a3) and Washington Y. Ochieng (a3)...

Abstract

There is increasing demand for navigation capability for space vehicles. The idea to extend the application of Global Navigation Satellite Systems (GNSS) from terrestrial to space applications by the use of main beam and side lobe signals has been shown to be feasible. In order to understand the performance and the potential space applications GNSS can support, this paper characterises the Space Service Volume (SSV) in terms of the four parameters of minimum received power, satellite visibility, pseudorange accuracy and Geometric Dilution of Precision (GDOP). This new definition enables the position errors to be estimated. An analytical methodology is proposed to characterise minimum received power for the worst location. Satellite visibility and GDOP are assessed based on grid points at different height layers (to capture the relationship between height and visibility) for single and multiple GNSS constellations, the former represented by BeiDou III (BDS III) and the latter, BDS III in various combinations with GPS, GLONASS and GALILEO. Additional simulation shows that GNSS can potentially support lunar exploration spacecraft at the Earth phasing orbit. This initial assessment of SSV shows the potential of GNSS for space vehicle navigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterisation of GNSS Space Service Volume
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterisation of GNSS Space Service Volume
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterisation of GNSS Space Service Volume
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Bamford, W., Naasz, B. and Moreau, M.C. (2006), Navigation Performance in High Earth Orbits Using Navigator GPS Receiver, 29th Annual AAS Guidance and Control Conference, Breckenridge, CO.
Bauer, F.H., Moreau, M.C., Dahle-Melsaether, M.E., Petrofski, W.P., Stanton, B.J., Thomason, S., Harris, G.A., Sena, R. P. and Temple, L. P. III (2006), The GPS Space Service Volume. In: Proceedings of the ION GNSS 2006, Fort Worth, Texas. 2503–2514.
Cáceres, M. (2008), A Look at The Next 20 Years. Aerospace America, 46, 2022.
GPS World staff (2013). GIOVE-A uses GPS side lobe signals for far-Out space navigation. GPS World, April 12, 2013.
GPS SPS PS. (2008). Global Positioning System Standard Positioning Service Performance Standard. In: http://www.pnt.gov/public/docs/2008/, 4th Edition.
Hogg, D.C. (1993), Fun with the Friis Free-space Transmission Formula. Antennas and Propagation Magazine, IEEE, 35(4), 3335.
ICD-BDS. (2012). BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B1I (Version 1.0).
ICD-GALILEO. (2010). Galileo Open Service, Signal In Space Interface Control Document, OS SIS ICD, Issue 1·1. September, 2010.
ICD-GLONASS. (2008). GLONASS Interface Control Document, Navigational radio signal In bands L1, L2, Edition 5.1. 2008.
Kaplan, E.D. and Hegarty, C. (2006), Understanding GPS: Principles and Applications, Second Version. Norwood, MA: Artech House.
Kronman, J.D. (2000), Experience Using GPS for Orbit Determination of a Geosynchronous Satellite, Proceedings of ION GPS 2000, Salt Lake City, UT. 1622–1626.
Moreau, M.C., Axelrad, P., Garrison, J.L., Wennersten, M. and Long, A.C. (2001). Test Results of the PiVoT Receiver in High Earth Orbits using a GSS GPS Simulator, Proceedings of ION GPS 2001, Salt Lake City, UT. 2316–2326.
Moreau, M.C., Davis, E.P., Carpenter, J.R., Davis, G.W., Jackson, L.A. and Axelrad, P. (2002). Results from the GPS Flight Experiment on the High Earth Orbit AMSAT AO-40 Spacecraft, Proceedings of the ION GPS 2002, Portland, OR. 1–12.
Miller, J.J. and Moreau, M.C. (2012). Enabling a Fully Interoperable GNSS Space Service Volume, ICG WG-B Interim Meeting, Vienna, Austria, 6 June 2012.
Stanton, B.J., Parker Temple, L. III and Edgar, C.E. (2006). Analysis of Signal Availability in the GPS Space Service Volume, Proceedings of the ION GNSS 2006, Fort Worth, Texas. 2531–2541.
Van Dierendonck, A.J., Fenton, P. and Ford, T. (1992). Theory and Performance of Narrow Correlator Spacing in a GPS Receiver, Journal of the Institute of Navigation, 39(3), 265283.
Yang, W. (2010). Phasing Orbit Design for Chinese Lunar Satellite CE-1, Chinese Space Science and Technology, 30(1), 1824.
Yu, C., Cui, G., Zheng, Y., Chen, H. and Nie, Q. (2009). The Adaptability Study of Bursa Model, Information Technology and Applications, 3, 620623.
Zarlink Semiconductor. (1999). GPS2000: GPS Receiver Hardware Design, Application Note 855, Issue 2·0 October 1999.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed