Skip to main content Accessibility help
×
Home

AUV Bathymetric Simultaneous Localisation and Mapping Using Graph Method

  • Teng Ma (a1), Ye Li (a1), Yusen Gong (a1), Rupeng Wang (a1), Mingwei Sheng (a1) and Qiang Zhang (a1)...

Abstract

Although topographic mapping missions and geological surveys carried out by Autonomous Underwater Vehicles (AUVs) are becoming increasingly prevalent, the lack of precise navigation in these scenarios still limits their application. This paper deals with the problems of long-term underwater navigation for AUVs and provides new mapping techniques by developing a Bathymetric Simultaneous Localisation And Mapping (BSLAM) method based on graph SLAM technology. To considerably reduce the calculation cost, the trajectory of the AUV is divided into various submaps based on Differences of Normals (DoN). Loop closures between submaps are obtained by terrain matching; meanwhile, maximum likelihood terrain estimation is also introduced to build weak data association within the submap. Assisted by one weight voting method for loop closures, the global and local trajectory corrections work together to provide an accurate navigation solution for AUVs with weak data association and inaccurate loop closures. The viability, accuracy and real-time performance of the proposed algorithm are verified with data collected onboard, including an 8 km planned track recorded at a speed of 4 knots in Qingdao, China.

Copyright

Corresponding author

References

Hide All
Ånonsen, K. B., Hagen, O. K., Hegrenæs, Ø. and Hagen, P. (2013). The HUGIN AUV Terrain Navigation Module. MTS/IEEE OCEANS - San Diego, San Diego, CA, 1–8.
Barkby, S., Williams, S., Pizarro, O. and Jakuba, M. (2009). An efficient approach to bathymetric SLAM. IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, 219–224.
Barkby, S., Williams, S. B., Pizarro, O. and Jakuba, M. V. (2012). Bathymetric Particle Filter SLAM Using Trajectory Maps. International Journal of Robotics Research, 31(12), 14091430.
Chen, P. (2016). Study on Seabed Terrain Matching Navigation with Multi-Senor for AUV. Ph.D. dissertation, Harbin Engineering University. (in Chinese)
Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing. International Journal of Robotics Research, 25(12), 11811204.
Doble, M. J., Forrest, A. L., Wadhams, P. and Laval, B.E. (2009). Through-ice AUV Deployment: Operational and Technical Experience from Two Seasons of Arctic Fieldwork. Cold Regions Science & Technology, 56(2–3), 9097.
Donovan, G. T. (2012). Position Error Correction for an Autonomous Underwater Vehicle Inertial Navigation System (INS) Using a Particle Filter. IEEE Journal of Oceanic Engineering, 37(3), 431445.
Durrant-whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part I. IEEE Robotics & Automation Magazine, 13(3), 108117.
Feng, Q. T. (2004). The Research on New Terrain Elevation Matching Approaches and Their Applicability. Ph.D. dissertation, Nation University of Defense Technology. (in Chinese)
Hagen, O. K. and Ånonsen, K. B. (2014). Using Terrain Navigation to Improve Marine Vessel Navigation Systems. Marine Technology Society Journal, 48(2), 4558(14).
Hurtós, N., Ribas, D., Cufí, X., Petillot, Y. and Salvi, J. (2015). Fourier-based Registration for Robust Forward-looking Sonar Mosaicing in Low-visibility Underwater Environments. Journal of Field Robotics, 32(1), 123151.
Ila, V., Polok, L., Solony, M. and Svoboda, P. (2017). SLAM++ -A highly efficient and temporally scalable incremental SLAM framework. International Journal of Robotics Research, 36(3), 210230.
Johannsson, H., Kaess, M., Englot, B., Hover, F. and Leonard, J. (2010). Imaging sonar-aided navigation for autonomous underwater harbor surveillance. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan.
Kaess, M., Ranganathan, A. and Dellaert, F. (2008). iSAM: Incremental Smoothing and Mapping. IEEE Transactions on Robotics, 24(6), 13651378.
Kim, A. and Eustice, R. M. (2013). Real-Time Visual SLAM for Autonomous Underwater Hull Inspection Using Visual Saliency. IEEE Transactions on Robotics, 29(3), 719733.
Kownacki, C. (2016). A concept of laser scanner designed to realize 3D obstacle avoidance for a fixed-wing UAV. Robotica, 34(2):243257.
Li, Y., Ma, T., Wang, R., Chen, P. and Zhang, Q. (2017). Correction Method for AUV Seabed Terrain Mapping. Journal of Navigation, 70, 10621078.
Mallios, A., Ridao, P., Ribas, D. and Hernández, E. (2014). Scan Matching SLAM in Underwater Environments. Autonomous Robots, 36(3), 181198.
Nygren, I. and Jansson, M. (2004). Terrain Navigation for Underwater Vehicles Using the Correlator Method. IEEE Journal of Oceanic Engineering, 29(3), 906915.
Nygren, I. (2005). Terrain Navigation for Underwater Vehicles. Ph.D. dissertation, Royal Institute of Technology.
Palomer, A., Ridao, P., Ribas, D., Mallios, A., Gracias, N. and Vallicrosa, G. (2013). Bathymetry-based SLAM with Difference of Normals Point-cloud Subsampling and Probabilistic ICP Registration. MTS/IEEE OCEANS - Bergen, Bergen, Norway, 1–7.
Palomer, A., Ridao, P., Romagós, D. R. and Vallicrosa, G. (2015). Multi-beam Terrain/Object Classification for Underwater Navigation Correction. MTS/IEEE OCEANS – Genova, Genova, Spain, 1–5.
Palomer, A., Ridao, P. and Ribas, D. (2016). Multibeam 3D Underwater SLAM with Probabilistic Registration. Sensors, 16, 560.
Paull, L., Saeedi, S., Seto, M. and Li, H. (2014). AUV Navigation and Localization: A Review. IEEE Journal of Oceanic Engineering, 39, 131149.
Ribas, D., Ridao, P., Tardós, J. D. and Neira, J. (2008). Underwater SLAM in Man-made Structured Environments. Journal of Field Robotics, 25 (11–12), 898921.
Roman, C. and Singh, H. (2010). A Self-Consistent Bathymetric Mapping Algorithm. Journal of Field Robotics, 24 (1–2), 2350.
Rosen, D. M., Kaess, M. and Leonard, J. J. (2012). An incremental trust-region method for Robust online sparse least-squares estimation, 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, 1262–1269.
Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press, Inc.
Stuckey, R. A. (2012). Navigational Error Reduction of Underwater Vehicles with Selective Bathymetric SLAM. Navigation Guidance & Control of Underwater Vehicles, 45(5), 118125.
Wang, N., Lv, S., Zhang, W., Liu, Z. and Er, M. J. (2017a). Finite-time observer based accurate tracking control of a marine vehicle with complex unknowns. Ocean Engineering, 145, 406415.
Wang, N., Su, S. F., Yin, J., Zheng, Z. and Meng, J. E. (2017b). Global Asymptotic Model-Free Trajectory-Independent Tracking Control of an Uncertain Marine Vehicle: An Adaptive Universe-Based Fuzzy Control Approach. IEEE Transactions on Fuzzy Systems, DOI:10.1109/TFUZZ.2017.2737405.
Zhou, L., Cheng, X., Zhu, Y., Dai, C. and Fu, J. (2017). An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles. Sensors, 17, 680.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed