Skip to main content Accessibility help
×
Home

Analysis of Speed Prediction Error on Oceanic Flights

  • Ryota Mori (a1)

Abstract

The accuracy of speed prediction error to the next waypoint is a key factor in maintaining longitudinal separation on oceanic routes. This estimation is often used by air traffic control to estimate the future position of aircraft, and the estimation errors result in potential separation infringement. While most aircraft can calculate the estimated time at each future waypoint using the onboard Flight Management System, the factors affecting the inaccuracy of the estimation require more clarification. This paper investigates the accuracy of the speed prediction error on oceanic routes and examines the main factor of error using airline flight data. The results show that wind prediction error is a main source of speed prediction error, and significant differences of the speed prediction error among airlines and aircraft types were observed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Analysis of Speed Prediction Error on Oceanic Flights
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Analysis of Speed Prediction Error on Oceanic Flights
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Analysis of Speed Prediction Error on Oceanic Flights
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Bai, X., Weitz, L. A. and Priess, S. (2016). Evaluating the Impact of Estimated Time of Arrival Accuracy on Interval Management Performance. AIAA SciTech Forum, AIAA Guidance, Navigation, and Control Conference, AIAA-2016-1852.
Barry, S., and Aldis, G. (2013). Additional Information on Collision Risk Calculations for Oceanic RNP2 with Allowance for Observed Navigation Performance and Mach Restrictions. ICAO SASP-WG/WHL/23, WP02.
Falk, C. (2013). Observed Aircraft Speeds and Along Track Speed Prediction Errors in Oceanic Airspace. ICAO SASP-WG/WHL/23, WP16.
Fujita, M. (2007). Analysis of ADS-C Data. ICAO SASP-WG/WHL/11, WP23.
Hsu, D. A. (1981). The Evaluation of Aircraft Collision Probabilities at Intersecting Air Routes. The Journal of Navigation, 34–1, 78102.
International Civil Aviation Organization (ICAO). (2010) Operating Procedures and Practices for Regional Monitoring Agencies in Relation to the Use of a 300 m (1000 ft) Vertical Separation Minimum Between FL 290 and FL 410 Inclusive, Doc 9937.
International Civil Aviation Organization (ICAO). (2016). 2016–2030 Global Air Navigation Plan.
International Civil Aviation Organization (ICAO). (2017). Manual on Monitoring the Application of Performance-based Horizontal Separation Minima, Doc 10063.
Japan Meteorological Agency (JMA). (2013). Outline of the operational numerical weather prediction at the Japan Meteorological Agency. Appendix to WMO numerical weather prediction progress report. Appendix to WMO technical progress report on the global data-processing and forecasting system and numerical weather prediction. https://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline2013-nwp/index.htm. Accessed 24 April 2019.
Lee, J., Lee, S. and Hwang, I. (2016) Hybrid System Modeling and Estimation for Arrival Time Prediction in Terminal Airspace. Journal of Guidance, Control, and Dynamics, 39–4, 903910.
Mori, R. (2014). Refined Collision Risk Model for Oceanic Flight Under Longitudinal Distance-Based Separation with ADS-C Environment. The Journal of Navigation, 67(5), 845868.
Nagaoka, S., Amai, O. and Sumiya, M. (2002). Preliminary Collision Risk Analysis for Evaluating the Feasibility of a 50 NM Longitudinal Separation in a NOPAC Route in ADS Environments. ICAO SASP-WG/WHL/1-WP/31.
Reich, P. G. (1966). Analysis of long-range air traffic systems: separation standards. The Journal of Navigation, 19, 8898; 169–196; 331–347.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed