Skip to main content Accessibility help
×
Home

Unsteady Analysis of the Flow Rectification Performance of Conical Microdiffuser Valves for Valveless Micropump Applications

  • Y.-C. Wang (a1), S.-H. Lin (a1) and D. Jang (a1)

Abstract

A numerical analysis of the unsteady flows in conical microdiffusers appropriate for valveless micropump applications is performed. The rectification efficiency of the diffuser valve is calculated directly as a function of geometric and operational parameters, including diffuser angle, diffuser slenderness, sizes of actuation chamber and inlet/outlet port, actuation frequency, and amplitude of actuation pressure. The computational results show that the diffuser with diverging angle of 10° and slenderness of 7.5 has the best rectification performance. For large actuation pressure amplitude, the optimal rectification efficiency and its corresponding Roshko number are relatively high. At the optimal Roshko number, the flow impedance is found to be dominated by fluid inertia. Sizes of the pump chamber and inlet/outlet port are shown to have a prominent effect on valve performance. Small actuation chamber or small inlet/outlet port can significantly deteriorate the valving performance of the diffuser.

Copyright

Corresponding author

* Associate Professor, corresponding author
** Master

References

Hide All
1.Stemme, E. and Stemme, G., “A Valveless Diffuser/Nozzle Fluid Pump,” Sensors and Actuators A, 39, pp. 159167(1993).
2.Olsson, A., Stemme, G. and Stemme, E., “A Valve-Less Planar Fluid Pump with two Pump Chambers,” Sensors and Actuators A, 4647, pp. 549556 (1995).
3.Olsson, A., Stemme, G. and Stemme, E., “Diffuser-Element Design Investigation for Valve-Less Pumps,” Sensors and Actuators A, 57, pp. 137143 (1996).
4.Gerlach, T., “Microdiffusers as Dynamic Passive Valves for Mcropump Applications,” Sensors and Actuators A, 69, pp. 181191(1998).
5.Jiang, X. N., Zhou, Z. Y., Huang, X. Y., Li, Y., Yang, Y. and Liu, C. Y., “Micronozzle/Diffuser Flow and its Application in Micro Valveless Pumps,” Sensors and Ac-tuators A, 70, pp. 8187 (1998).
6.Olsson, A., Stemme, G. and Stemme, E., “Numerical and Experimental Studies of Flat-Walled Diffuser Elements for Valve-Less Micropumps,” Sensors and Actuators A, 84, pp. 165175(2000).
7.Cui, Q., Liu, C. and Zha, X. F., “Study on a Piezoelectric Micropump for the Controlled Drug Delivery System,” Microfluidics and Nanofluidics, 3, pp. 377390 (2007).
8.Olsson, A., Enoksson, P., Stemme, G. and Stemme, E., “A Valve-Less Planar Pump Isotropically Etched in Silicon,” Journal of Micromechanics and Microengneering, 6, pp. 8791(1996).
9.Olsson, A., Enoksson, P., Stemme, G. and Stemme, E., “Micromachined Flat-Walled Valveless Diffuser Pumps,” Journal of Micromechanics and Microengneering, 6, pp. 161166(1997).
10.Gerlach, T. and Wurmus, H., “Working Principle and Performance of the Dynamic Micropump,” Sensors and Actuators A, 50, pp. 135140 (1995).
11.Lee, Y.-FL, Kang, T. G. and Cho, Y.-FL, “Characterization of Bi-Directionally Oscillating Dynamic Flow and Frequency-Dependent Rectification Performance of Microdiffusers,” Proceeding of IEEE Micro Electro Mechanical Systems, Miyazaki, Japan, pp. 403408 (2000).
12.Kim, J. and Xu, X., “Laser-Based Fabrication of Polymer Micropump,” Journal of Microlithography Microfabrication and Microsystems, 3, pp. 152158 (2004).
13.Sun, C.-L. and Huang, K. H., “Numerical Characterization of the Flow Rectification of Dynamic Microdiffusers,” Journal of Micromechanics and Microengneering, 16, pp. 13311339(2006).
14.Wang, C.-T., Leu, T.-S. and Sun, J.-M., “Unsteady Analysis of Mcrovalves with No Moving Parts,” Journal of Mechanics, 23, pp.914 (2007).
15.Peng, X. F., Peterson, G. P. and Wang, B. X., “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,” Experimental Heat Transfer, 7, pp. 249264 (1994).
16.Mala, G. M. and Li, D., “Flow Characteristics of Water in Microtubes,” International Journal of Heat and Fluid Flow, 20, pp. 142148 (1999).
17.Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P., “Fluid Flow in Micro-Channels,” International Journal of Heat and Mass Transfer, 48, pp. 19821998 (2005).
18.Kohl, M. J., Abdel-Khahk, S. I., Jeter, S. M. and Sadowski, D. L., “An Experimental Investigation of MicroChannel Flow with Internal Pressure Measurements,” International Journal of Heat and Mass Transfer, 48, pp. 15181533 (2005).
19.Yamahata, C, Lotto, C, Al-Assaf, E. and Gijs, M. A. M., “A PMMA Valveless Micropump Using Electromagnetic Actuation,” Microfluidics and Nanofluidics, 1, pp. 197207 (2005).
20.Xia, F., Tadigadapa, S. and Zhang, Q. M., “Electroactive Polymer Based Microfluidic Pump,” Sensors and Actuators A, 125, pp. 346352 (2006).

Keywords

Unsteady Analysis of the Flow Rectification Performance of Conical Microdiffuser Valves for Valveless Micropump Applications

  • Y.-C. Wang (a1), S.-H. Lin (a1) and D. Jang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed