Skip to main content Accessibility help
×
Home

Transient Response of Magnetostrictive Functionally Graded Material Square Plates Under Rapid Heating

  • C. C. Hong (a1)

Abstract

We used the generalized differential quadrature (GDQ) method to compute the transient responses of thermal stresses and center deflection amplitude in the magnetostrictive functionally graded material (FGM) square plate under rapid heating acting at its lower surface. We obtained the GDQ solutions in the three-layer of magnetostrictive FGM plates subjected to four simply supported edges. We presented the transient responses of thermal stress and center deflection amplitude of magnetostrictive FGM plates with/without velocity feedback control, respectively, under the effects of the ratio of length to thickness, the power law index, the temperature of environment and the applied heat flux.

Copyright

Corresponding author

*Corresponding author (cchong@mail.hust.edu.tw)

References

Hide All
1. Praveen, G. N. and Reddy, J. N., “Nonlinear Transient Thermoelastic Analysis of Functional Graded Ceramic-Metal Plates,” International Journal of Solids and Structures, 35, pp. 44574476 (1998).
2. Yang, J. and Shen, H. S., “Dynamic Response of Initially Stressed Functionally Graded Rectangular Thin Plates,” Composite Structures, 54, pp. 497508 (2001).
3. He, X. Q., Ng, T. Y., Sivashanker, S. and Liew, K. M., “Active Control of FGM Plates with Integrated Piezoelectric Sensors and Actuators,” International Journal of Solids and Structures, 38, pp. 16411655 (2001).
4. Vel, S. S. and Batra, R. C., “Three-Dimensional Analysis of Transient Thermal Stresses in Functionally Graded Plates,” International Journal of Solids and Structures, 40, pp. 71817196 (2003).
5. Ootao, Y. and Tanigawa, Y., “Three-Dimensional Solution for Transient Thermal Stresses of Functionally Graded Rectangular Plate Due to Nonuniform Heat Supply,” International Journal of Mechanical Sciences, 47, pp. 17691788 (2005).
6. Prakash, T. and Ganapathi, M., “Supersonic Flutter Characteristics of Functionally Graded Flat Panels Including Thermal Effects,” Composite Structures, 72, pp. 1018 (2006).
7. Yang, J. and Huang, X. L., “Nonlinear Transient Response of Functionally Graded Plates with General Imperfections in Thermal Environments,” Computer Methods in Applied Mechanics and Engineering, 196, pp. 26192630 (2007).
8. Xia, X. K. and Shen, H. S., “Nonlinear Vibration and Dynamic Response of FGM Plates with Piezoelectric Fiber Reinforced Composite Actuators,” Composite Structures, 90, pp. 254262 (2009).
9. Lee, J. M. and Ma, C. C., “Analytical Solutions for an Antiplane Problem of Two Dissimilar Functionally Graded Magnetoelectroelastic Half-Planes,” ACTA Mechanica, 212, pp. 2138 (2010).
10. Wang, T. Z. and Zhou, Y. H., “A Nonlinear Transient Constitutive Model with Eddy Current Effects for Giant Magnetostrictive Materials,” Journal of Applied Physics, 108, 123905 (2010).
11. Wu, C. P., Chen, S. J. and Chiu, K. H., “Three-Dimensional Static Behavior of Functionally Graded Magneto-Electro-Elastic Plates Using the Modified Pagano Method,” Mechanics Research Communications, 37, pp. 5460 (2010).
12. Lee, J. M. and Ma, C. C., “Analytical Full-Field Solutions of a Magnetoelectroelastic Layered Half-Plane,” Journal of Applied Physics, 101(8), 083502 (2007).
13. Huang, J. H. and Kuo, W. S., “The Analysis of Piezoelectric/Piezomagnetic Composite Materials Containing Ellipsoidal Inclusions,” Journal of Applied Physics, 81, pp. 13781386 (1997).
14. Wojciechowski, S., “New Trends in the Development of Mechanical Engineering Materials,” Journal of Material Processing Technology, 106, pp. 230235 (2000).
15. Katranas, G. S., Meydan, T., Ovari, T. A. and Borza, F., “Thermal Stability of Bi-Layer Thin Film Displacement Sensors Systems,” Sensors and Actuators A, 142, pp. 479484 (2008).
16. Grunwald, A. and Olabi, A. G., “Design of a Magnetostrictive (MS) Actuator,” Sensors and Actuators A, 144, pp. 161175 (2008).
17. Ramirez, F., Heyliger, P. R. and Pan, E., “Free Vibration Response of Two-Dimensional Magneto-Electro-Elastic Laminated Plates,” Journal of Sound and Vibration, 292, pp. 626644 (2006).
18. Pradhan, S. C., “Vibration Suppression of FGM Shells using Embedded Magnetostrictive Layers,” International Journal of Solids and Structures, 42, pp. 24652488 (2005).
19. Lee, S. J. and Reddy, J. N., “Non-Linear Response of Laminated Composite Plates Under Thermomechanical Loading,” International Journal of Non-Linear Mechanics, 40, pp. 971985 (2005).
20. Buchanan, G. R., “Layered Versus Multiphase Magneto-Electro-Elastic Composites,” Composites Part B: Engineering, 35, pp. 413420 (2004).
21. Hong, C. C., “Thermal Vibration of Magnetostrictive Material in Laminated Plates by the GDQ Method,” The Open Mechanics Journal, 1, pp. 2937 (2007).
22. Hong, C. C., “Transient Responses of Magnetostrictive Plates Without Shear Effects,” International Journal of Engineering Science, 47, pp. 355362 (2009).
23. Chi, S. H. and Chung, Y. L., “Mechanical Behavior of Functionally Graded Material Plates Under Transverse Load. Part I: Analysis,” International Journal of Solids and Structures, 43, pp. 36573674 (2006).
24. Whitney, J. M., Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company Inc., Pennsylvania, USA (1987).
25. Shu, C. and Du, H., “Implementation of Clamped and Simply Supported Boundary Conditions in the GDQ Free Vibration Analyses of Beams and Plates,” International Journal of Solids and Structures, 34, pp. 819835 (1997).
26. Reddy, J. N. and Chin, C. D., “Thermoelastical Analysis of Functionally Graded Cylinders and Plate,” Journal of Thermal Stresses, 21, pp. 593626 (1998).
27. Shariyat, M., “Dynamic Buckling of Suddenly Loaded Imperfect Hybrid FGM Cylindrical Shells with Temperature Dependent Material Properties under Thermo-Electromechanical Loads,” International Journal of Mechanical Sciences, 50, pp. 15611571 (2008).
28. Hetnarski, R. B., Thermal Stresses II, Elsevier Science Publishers B. V., pp. 332336 (1987).
29. Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids, 2nd Edition, Oxford University Press, London (1959).
30. Hong, C. C., “Rapid Heating Induced Vibration of Magnetostrictive Functionally Graded Material Plates,” Transactions of the ASME, Journal of Vibration and Acoustics, 134, 021019, pp. 111 (2012).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed