Skip to main content Accessibility help
×
Home

Three-Dimensional Analysis of a Thermo-Viscoelastic Half-Space due to Thermal Shock in Temperature-Rate-Dependent Thermoelasticity

  • S. Kumar (a1), J. S. Sikka (a2) and S. Choudhary (a3)

Abstract

The present paper is aimed at studying the effects of viscosity and time on the propagation of thermoelastic waves in a homogeneous and isotropic three-dimensional medium whose surface is acted upon by a thermal load under the purview of temperature-rate-dependent thermoelasticity. The normal mode analysis technique has been employed to solve the resulting non-dimensional coupled field equations and hence the exact expressions for displacement component, stress, temperature field and strain are obtained. The problem is further illustrated by computing the numerical values of the field variables for a copper- like material and depicting them graphically. Numerical results predict finite speed of propagation for thermoelastic waves.

Copyright

Corresponding author

*Corresponding author (sahuksv@rediffmail.com)

References

Hide All
1. Biot, M., “Thermoelasticity and Irreversible Thermo-Dynamics,” Journal of Applied Physics, 27, pp. 240253 (1956).
2. Chandrasekharaiah, D. S., “Hyperbolic Thermoelasticity: A Review of Recent Literature,” Applied Mechanics Reviews, 51, pp. 705729 (1998).
3. Hetnarski, R. B. and Ignaczak, J., “Generalized Thermoelasticity,” Journal of Thermal Stresses, 22, pp. 451476 (1999).
4. Lord, H. W. and Shulman, Y., “A Generalized Dynamical Theory of Thermoelasticity,” Journal of the Mechanics and Physics of Solids, 15, pp. 299309 (1967).
5. Green, A. E. and Lindsay, K. A., “Thermoelasticity,” Journal of Elasticity, 2, pp. 17 (1972).
6. Green, A. E. and Naghdi, P. M., “A Re-Examination of the Basic Postulates of Thermo-Mechanics,” Proceedings of the Royal Society of London A, 432, pp. 171194 (1991).
7. Green, A. E. and Naghdi, P. M., “On Undamped Heat Waves in an Elastic Solid,” Journal of Thermal Stresses, 15, pp. 253264 (1992).
8. Green, A. E. and Naghdi, P. M., “Thermoelasticity Without Energy Dissipation,” Journal of Elasticity, 31, pp. 189209 (1993).
9. Dhaliwal, R. and Sherief, H., “Generalized Thermoelasticity for Anisotropic Media,” Quarterly of Applied Mathematics, 33, pp. 18 (1980).
10. Sherief, H. and Hamza, F., “Generalized Thermoelastic Problem of a Thick Plate Under Axisymmetric Temperature Distribution,” Journal of Thermal Stresses, 17, pp. 435453 (1994).
11. Sherief, H. and Hamza, F., “Generalized Two-Dimensional Thermoelastic Problem in Spherical Region Under Axisymmetric Distribution,” Journal of Thermal Stresses, 19, pp. 5576 (1996).
12. Sherief, H. and Helmy, K., “A Two-Dimensional Problem for a Half-Space in Magneto-Thermoelasticity with Thermal Relaxation,” International Journal of Engineering Science, 40, pp. 587604 (2002).
13. Muller, I. M., “The Coldness, a Universal Function in Thermoelastic Bodies,” Archive for Rational Mechanics and Analysis, 41, pp. 319332 (1971).
14. Green, A. E. and Laws, N., “On the Entropy Production Inequality,” Archive for Rational Mechanics and Analysis, 45, pp. 4753 (1972).
15. Suhubi, E. S., “Thermoelastic Solids,” Continuum Physics Part 2, Vol. 2, Eringen, A.C. (Ed.), Academic Press, New York (1975).
16. Freudenthal, A. M., “Effect of Rheological Behaviour on Thermal Stresses,” Journal of Applied Physics, 25, pp. 11101117 (1954).
17. Ilioushin, A. A. and Pobedria, B. E., Fundamentals of the Mathematical Theory of Thermal Viscoelasticity, Nauka, Moscow (1970).
18. Baksi, A., Bera, R. K. and Debnath, L., “A Study of Magneto-Thermoelastic Problems with Thermal Relaxation and Heat Sources in a Three-Dimensional Infinite Rotating Elastic Medium,” International Journal of Engineering Science, 43, pp. 14191434 (2005).
19. Ezzat, M. A. and Youssef, H. M., “Three-Dimensional Thermal Shock Problem of Generalized Thermoelastic Half-Space,” Applied Mathematical Modelling, 34, pp. 36083622 (2010).
20. Sarkar, N. and Lahiri, A., “A Three-Dimensional Thermoelastic Problem for a Half-Space Without Energy Dissipation,” International Journal of Engineering Science, 51, pp. 310325 (2012).
21. Kalkal, K. K. and Deswal, S., “Effects of Phase Lags on Three-Dimensional Wave Propagation with Temperature-Dependent Properties,” International Journal of Thermophysics, 35, pp. 952969 (2014).
22. Santra, S., Das, N. C., Kumar, R. and Lahiri, A., “Three-Dimensional Fractional Order Generalized Thermoelastic Problem Under the Effect of Rotation in a Half-Space,” Journal of Thermal Stresses, 38, pp. 309324 (2015).
23. Kalkal, K. K. And Deswal, S., “Analysis of Vibrations in Fractional Order Magneto-Thermo-Viscoelasticity with Diffusion,” Journal of Mechanics, 30, pp. 383394 (2014).

Keywords

Related content

Powered by UNSILO

Three-Dimensional Analysis of a Thermo-Viscoelastic Half-Space due to Thermal Shock in Temperature-Rate-Dependent Thermoelasticity

  • S. Kumar (a1), J. S. Sikka (a2) and S. Choudhary (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.