Skip to main content Accessibility help
×
×
Home

Theoretical Estimation of Maximum Ellipsoidal Magnitude of a Low-Viscosity Droplet in a Parallel Gas Stream

  • Z.-B. Wang (a1), H.-F. Bai (a1), J.-X. Xia (a1), H.-Q. Zhong (a1) and Y.-C. Li (a1)...

Abstract

Maximum ellipsoidal magnitude of the droplet is an important basic parameter for calculating drag force, droplets axial-velocity and dispersed-phase pressure gradient in an annular-mist pipe flow. An analytical correlation to predict the maximum ellipsoidal magnitude of a low-viscosity droplet in a parallel gas stream based on energy conservation and volume conservation. Stagnant pressure distribution on droplet surface is revised from Flachsbart's formula. The proposed correlation has clear physical meaning and easy to use. The correlation captures the deformation mechanism with an average absolute percent error of 9.53%. The effect of stagnant pressure distribution on the proposed correlation's accuracy is discussed.

Copyright

Corresponding author

*Corresponding author (swpuwzb@163.com)

References

Hide All
1.Wierzba, A., “Deformation and Breakup of Liquid Drops in at Nearly Critical Weber Numbers,” Experiments in Fluids, 9, pp. 5964 (1990).
2.Hinze, J.O., “Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes,” AIChE Journal, 1, pp. 289295 (1955).
3.Azzopardi, B. J., “Drops in Annular Two-Phase Flow,” International Journal of Multiphase Flow, 23 (Supplementary), pp. 153 (1997).
4.Acrivos, A. and Lo, T. S., “Deformation and Breakup of a Single Slender Drop in an Extensional Flow,” Journal of Fluid Mechanics, 86, pp. 641672 (1978).
5.Stone, H. A., “Dynamics of Drop Deformation and Breakup in Viscous Fluids,” Annual Review of Fluid Mechanics, 26, pp. 65102 (1994).
6.Rallison, J. M., “A Numerical Study of the Deformation and Burst of a Viscous Drop in General Shear Flows,” Journal of Fluid Mechanics, 109, pp. 465482 (1981).
7.Turner, R. G., Hubbard, M. G. and Dukler, A. E., “Analysis and Prediction of Minimum Flow Rate for the Continuous Removeal of Liquids from Gas Wells,” Journal of Petroleum Technology, Nov, pp. 7582 (1969)
8.Helenbrook, B. T. and Edwards, C.F., “Quasi-Steady Deformation and Drag of Uncontaminated Liquid Drops,” International Journal of Muhiphase Flow, 28, pp. 16311657 (2002).
9.Gonor, A.L. and Zolotova, N. V., “Spreading and Breakup of a Drop in a Gas Stream,” Acta Astronautica, 2, pp. 137142 (1984).
10.Taylor, G. I., “The Shape and Acceleration of a Drop in a High Speed Air Stream,” The Scientific Papers of Sir Geoffrey Ingram Taylor, III, Cambridge University Press, U.K. (1963).
11.O’Rourke, P. J. and Amsden, A. A., “The TAB Method for Numerical Calculation of Spray Droplet Breakup,” Society of Automotive Engineers, pp. 20872089 (1987).
12.Clark, M. M., “Drop Breakup in a Turbulent flow-1. Conceptual and Modeling Consideration,” Chemical Engineering Science, 43, pp. 671679 (1988).
13.Ibrahim, E. A., Yang, H. Q. and Przekwas, A. J., “Modeling of Spray Droplets Deformation and Breakup,” AIAA Journal of Propulsion and Power, 9, pp. 651654 (1993).
14.Hslang, L. P. and Faeth, G. M., “Near-Limit Drop Deformation and Secondary Breakup,” International Journal of Multiphase Flow, 18, pp. 635652 (1992).
15.Flachsbart, O., “The Resistance of Spheres in the Vicinity of the Critical Reynolds Number (Der Wiederstand von Kugeln in der Umgebung der kritischen Reynoldschen),” Ergebn Aerod Versuchs Anstalt, 4, pp. 106108 (1932).
16.Li, M., Li, S. L. and Sun, L. T., “New View on Continuous-Removal Liquids from Gas Wells,” SPE Production and Facilities, 43, pp. 4246 (2002).
17.Liu, Z. and Reitz, R. D., “An Analysis of the Distortion of the Distortion and Breakup Mechanisms of High Speed Liquid Drops,” International Journal of Multiphase Flow, 23, pp. 631650 (1997).
18.Krzeczkowski, S. A., “Measurement of Liquid Droplet Disintegration Mechanisms,” International Journal of Multiphase Flow, 6, pp. 227239 (1980).
19.Chou, W. H. and Faeth, G. M., “Temporal Properties of Secondary Drop Breakup in the Bag Breakup Regime,” International Journal of Multiphase Flow, 24, pp. 889912 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Mechanics
  • ISSN: 1727-7191
  • EISSN: 1811-8216
  • URL: /core/journals/journal-of-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed