Skip to main content Accessibility help
×
Home

A Semi-Analytical Approach for Stress Concentration of Cantilever Beams with Holes Under Bending

  • J.-T. Chen (a1) and P.-Y. Chen (a1)

Abstract

In the paper, the degenerate kernels and Fourier series expansions are adopted in the null-field integral equation to solve bending problems of a circular beam with circular holes. The main gain of using degenerate kernels in integral equations is free of calculating the principal values for singular integrals. An adaptive observer system is addressed to fully employ the property of degenerate kernels for circular boundaries in the polar coordinate. After moving the null-field point to the boundary and matching the boundary conditions, a linear algebraic system is obtained without boundary discretization. The unknown coefficients in the algebraic system can be easily determined. The present method is treated as a “semi-analytical” solution since error only attributes to the truncation of Fourier series. Stress concentration is also our concern. Finally, several examples, including two holes and four holes, are given to demonstrate the validity of the proposed method. The results are compared with those of Naghdi and Bird and Steele. Also, the position where the maximum concentration factor occurs is examined. The present formulation can be extended to handle beam problems with arbitrary number and various positions of circular holes by using the developed general-purpose program.

Copyright

Corresponding author

*Life-Time Distinguished Professor
**Master student

References

Hide All
1.Hwu, C. B., “Stroh Formalism and its Extensions to Coupled Inplane-bending Problems,” The Chinese Journal of Mechanics — Series A, 19, pp. 4153 (2003).
2.Shiah, Y. C., Fang, J., Wei, C. Y. and Liang, Y. C., “In-plane Bending Fracture of a Large Beam Containing a Circular-arc Crack,” The Chinese Journal of Mechanics— Series A 18, pp. 145151 (2002).
3.Huang, C. S., “Analysis of Stress Singularities at Bi-material Corners in Reddy's Theory of Plate Bending,” Journal of Mechanics, 22, pp. 6775 (2006).
4.Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill, New York (1956).
5.Timoshenko, S. P. and Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York (1970).
6.Chou, S. I., “Stress Field around Holes in Antiplane Shear Using Complex Variable Boundary Element Method,” ASMEJ. Applied Mechanics, 64, pp. 432435 (1997).
7.Ang, W. T. and Kang, I., “A Complex Variable Boundary Element Method for Elliptic Partial Differential Equations in a Multiply-connected Region,” Int. J. Computer Mathematics, 75, pp. 515525 (2000).
8.Hromadka, T. V. and Lai, C., The Complex Variable Boundary Element Method in Engineering Analysis, Springer-Verlag, New York (1986).
9.Honein, E., Honein, T. and Herrmann, G., “Further Aspects of the Elastic Field for Two Circular Inclusions in Antiplane Elastostatics,” ASME J. Applied Mechanics, 59, pp. 774779 (1992).
10.Chen, J. T., Shen, W. C. and Wu, A. C., “Null-field Integral Equations for Stress Field around Circular Holes under Anti-plane Shear,” Engineering Analysis with Boundary Elements, 30, pp. 205217 (2006).
11.Naghdi, A. K., “Bending of a Perforated Circular Cylindrical Cantilever,” Int. J. Solids and Structures, 28, pp. 739749 (1991).
12.Bird, M. D. and Steele, C. R., “A Solution Procedure for Laplace's Equation on Multiply Connected Circular Domains,” ASME J. Applied Mechanics, 59, pp. 398404 (1992).
13.Chen, J. T. and Hong, H.-K., “Review of Dual Boundary Element Methods with Emphasis on Hypersingular Integrals and Divergent Series,” Applied Mechanics Reviews, ASME, 52, pp. 1733 (1999).
14.Chen, J. T. and Chiu, Y. P., “On the Pseudo-differential Operators in the Dual Boundary Integral Equations Using Degenerate Kernels and Circulants,” Engineering Analysis with Boundary Elements, 26, pp. 4153 (2002).
15.Chen, J. T., Lin, J. H., Kuo, S. R. and Chiu, Y. P., “Analytical Study and Numerical Experiments for De-generate Scale Problems in Boundary Element Method Using Degenerate Kernels and Circulants,” Engineering Analysis with Boundary Elements, 25, pp. 819828 (2001).
16.Chen, J. T., Lee, C. F., Chen, I. L. and Lin, J. H., “An Alternative Method for Degenerate Scale Problem in Boundary Element Methods for the Two-dimensional Laplace Equation,” Engineering Analysis with Boundary Elements, 26, pp. 559569 (2002).
17.Chen, J. T., Kuo, S. R. and Lin, J. H., “Analytical Study and Numerical Experiments for Degenerate Scale Prob-lems in the Boundary Element Method for Two-Dimensional Elasticity,” Int. J. Numerical Methods in Engineering, 54, pp. 16691681 (2002).
18.Bird, M. D. and Steele, C. R., “A Solution Procedure for Laplace's Equation on Multiply Connected Circular Domains,” Asme J. Applied Mechanics, 59, pp. 398404 (1992).

Keywords

A Semi-Analytical Approach for Stress Concentration of Cantilever Beams with Holes Under Bending

  • J.-T. Chen (a1) and P.-Y. Chen (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed