Skip to main content Accessibility help
×
Home

A Self-Contained Portable Polymerase-Chain-Reaction System Integrated with Electromagnetic Mini-Actuators for Bi-Directional Fluid Transport

  • B. T. Chia (a1), S.-A. Yang (a1), M.-Y. Cheng (a1), C.-W. Lin (a2) and Y.-J. Yang (a1)...

Abstract

In this paper, the development of a portable polymerase chain reaction (PCR) device is presented. Integrating electromagnetic mini-actuators for bi-directional fluid transport, the proposed device, whose dimension is 67mm × 66mm × 25mm, can be fully operated with a 5V DC voltage. The device consists of four major parts: A disposable channel chip in which PCR mixture is manipulated and reacted, a heater chip which generates different temperature zones for PCR reaction, a linear actuator array for pumping PCR mixture, and a circuit module for controlling and driving the system. The advantages of the device include the rapid temperature responses associated with continuous-flow-type PCR devices, as well as the programmable thermal cycling associated with chamber-type PCR devices. The thermal characteristics are measured and discussed. PCR amplification is successfully performed for the 122 bp segment of MCF-7/adr cell line. Due to its small footprint, this self-contained system potentially can be employed for point-of-care (POC) applications.

Copyright

Corresponding author

****Professor, Corresponding author

References

Hide All
1. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A. and Arnheim, N., “Enzy-matic Amplification of Beta-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle-Cell Anemia,” Science, 230, pp. 13501354 (1985).
2. Zhang, C. and Xing, D., “Miniaturized PCR Chips for Nucleic Acid Amplification and Analysis: Latest Advances and Future Trends,” Nucleic Acids Research, 35, pp. 42234237 (2007).
3. Matsubara, Y., Kerman, K., Kobayashi, M., Yamamura, S., Morita, Y. and Tamiya, E., “Microchamber Array Based DNA Quantification and Specific Sequence Detection from a Single Copy Via PCR in Nanoliter Volumes,” Biosensors and Bioelectronics, 20, pp. 14821490 (2005).
4. Pal, R., Yang, M., Lin, R., Johnson, B. N., Srivastava, N., Razzacki, S. Z., Chomistek, K. J., Heldsinger, D. C., Haque, R. M., Ugaz, V. M., Thwar, P. K., Chen, Z., Alfano, K., Yim, M. B., Krishnan, M., Fuller, A. O., Larson, R. G., Burke, D. T. and Burns, M. A., “An Integrated Microfluidic Device for Influenza and Other Genetic Analyses,” Lab on a Chip, 5, pp. 10241032 (2005).
5. Kim, J., Byum, D., Mauk, M. G. and Bau, H. H., “A Disposable, Self-Contained PCR Chip,” Lab on a Chip, 9, pp. 606612 (2009).
6. Liu, H. B., Ramalingam, N., Jiang, Y., Dai, C. C., Hui, K. M. and Gong, H. Q., “Rapid Distribution of a Liquid Column Into a Matrix of Nanoliter Wells for Parallel Real-Time Quantitative PCR,” Sensors and Actuators B, 135, pp. 671677 (2009).
7. Neuzil, P., Zhang, C. Y., Pipper, J., Oh, S. and Zhuo, L., “Ultra Fast Miniaturized Real-Time PCR: 40 Cycles in Less Than Six Minutes,” Nucleic Acids Research, 34, e77 (2006).
8. Li, S., Fozdar, D. Y., Ali, M. F., Li, H., Shao, D., Vykoukal, D. M., Vykoukal, J., Floriano, P. N., Olsen, M., McDevitt, J. T., Gascoyne, P. R. C. and Chen, S., “A continuous-Flow Polymerase Chain Reaction Microchip with Regional Velocity Control,” Journal of Microelectromechanical Systems, 15, pp. 223236 (2006).
9. Chen, P.-C., Nikitopoulos, D. E., Soper, S. A. and Murphy, M. C., “Temperature Distribution Effects on Micro-CFPCR Performance,” Biomedical Microdevices, 10, pp. 141152 (2008).
10. Crews, N., Wittwer, C. and Gale, B., “Continuous-Flow Thermal Gradient PCR,” Biomedical Microdevices, 10, pp. 187195 (2008).
11. Sun, Y., Satyanarayan, M. V. D., Nguyen, N. T. and Kwok, Y. C., “Continuous Flow Polymerase Chain Reaction Using a Hybrid PMMA-PC Microchip with Improved Heat Tolerance,” Sensors and Actuators B, 130, pp. 836841 (2008).
12. Kiss, M. M., Ortoleva-Donnelly, L., Beer, N. R., Warner, J., Bailey, C. G., Colston, B. W., Rothberg, J. M., Link, D. R. and Leamon, J. H., “High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets,” Analytical Chemistry, 80, pp. 89758981 (2008).
13. Schaerli, Y., Wooton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., de-Mello, A. J., Abell, C. and Hollfelder, F., “Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets,” Analytical Chemistry, 81, pp. 302306 (2009).
14. Sun, Y., Nguyen, N. T. and Kwok, Y. C., “High-Throughput Polymerase Chain Reaction in Parallel Circular Loops Using Magnetic Actuation,” Analytical Chemistry, 80, pp. 61276130 (2008).
15. Wang, J.-H., Chien, L.-J., Hsieh, T.-M., Luo, C.-H., Chou, W.-P., Chen, P.-H., Chen, P.-J., Lee, D.-S. and Lee, G.-B., “A Miniaturized Quantitative Polymerase Chain Reaction System for DNA Amplification and Detection,” Sensors and Actuators B, 141, pp. 329337 (2009).
16. Chiou, J., Matsudaira, P., Sonin, A. and Ehrlich, D., “A Closed-Cycle Capillary Polymerase Chain Reaction Machine,” Analytical Chemistry, 73, pp. 20182021 (2001).
17. Bu, M., Melvin, T., Ensell, G., Wilkinson, J. S. and Evans, A. G. R., “Design and Theoretical Evaluation of a Novel Microfluidic Device to Be Used for PCR,” Journal of Micromechanics and Microengineering, 13, pp. S125130 (2003).
18. Wang, W., Li, Z.-X., Luo, R., Lu, S.-H., Xu, A.-D. and Yang, Y.-J., “Droplet-Based Micro Oscillating-Flow PCR Chip,” Journal of Micromechanics and Microengineering, 15, pp. 13691377 (2005).
19. Chen, L., West, J., Auroux, P.-A., Manz, A. and Day, P. J. R., “Ultrasensitive PCR and Real-Time Detection from Human Genomic Samples Using a Bidirectional Flow Microreactor,” Analytical Chemistry, 79, pp. 91859190 (2007).
20. Frey, O., Bonneick, S., Hierlemann, A. and Lichtenberg, J., “Autonomous Microfluidic Multi-Channel Chip for Real-Time PCR with Integrated Liquid Handling,” Biomedical Microdevices, 9, pp. 711718 (2007).
21. Chien, L.-J., Wang, J.-H., Hsieh, T.-M., Chen, P.-H., Chen, P.-J., Lee, D.-S., Luo, C.-H. and Lee, G.-B., “A Micro Circulating PCR Chip Using a Suction-Type Membrane for Fluidic Transport,” Biomedical Microdevices, 11, pp. 359367 (2009).
22. Krishnan, M., Ugaz, V. M. and Burns, M. A., “PCR in a Rayleigh-Benard Convection Cell,” Science, 298, p. 793 (2002).
23. Zhang, C. and Xing, D., “Parallel DNA Amplification by Convective Polymerase Chain Reaction with Various Annealing Temperatures on a Thermal Gradient Device,” Analytical Biochemistry, 387, pp. 102112 (2009).
24. Chang, Y.-H., Lee, G.-B., Huang, F.-C., Chen, Y.-Y. and Lin, J.-L., “Integrated Polymerase Chain Reaction Chips Utilizing Digital Microfluidics,” Biomedical Microdevices, 8, pp. 215225 (2006).
25. Guttenberg, Z., Muller, H., Habermuller, H., Geisbauer, A., Pipper, J., Felbel, J., Kielpinski, M., Scriba, J. and Wixforth, A, “Planar Chip Device for PCR and Hybridization with Surface Acoustic Wave Pump,” Lab on a Chip, 5, pp. 308317 (2005).
26. Tsuchiya, H., Okochi, M., Nagao, N., Shikida, M. and Honda, H., “On-Chip Polymerase Chain Reaction Microdevice Employing a Magnetic Droplet-Manipulation System,” Sensors and Actuators B, 130, pp. 583588 (2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed