Skip to main content Accessibility help
×
Home

A REVIEW OF ACTUATION FORCE IN ORIGAMI APPLICATIONS

  • S. R. Wu (a1), T. H. Chen (a1) (a2) and H. Y. Tsai (a1)

Abstract

Origami, the ancient paper folding art has inspired the engineering equipment and design for decades. The basic concept of origami is very general, which leads to applications ranging from small scale to large scale. Recently, researchers are interested in being able to create self-folding structures. Such a structure enables kinematic manipulation by external forces or moments without folding and/or unfolding operations. This is a beneficial application for many fields including aerospace systems, robots, small devices and self-assembly systems. In this paper, the investigation and analyses of the previous literatures on the key driving force of the actuation structure, including the heat, light, electricity, gas and other actuation methods. The aims are to provide researchers and practitioners with the support to systematically understand the latest technologies in this important and evolving field, with inspiration and direction for follow-up.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A REVIEW OF ACTUATION FORCE IN ORIGAMI APPLICATIONS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A REVIEW OF ACTUATION FORCE IN ORIGAMI APPLICATIONS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A REVIEW OF ACTUATION FORCE IN ORIGAMI APPLICATIONS
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author (hytsai@pme.nthu.edu.tw)

References

Hide All
1Lang, R. J., “The Science of Origami,” Physics World, 20, pp.3031 (2007).
2Stowers, A. K. and Lentink, D., “Folding in and out Passive Morphing in Flapping Wings,” Bioinspiration & Biomimetics, 10, 025001 (2015).
3Burgert, I. and Fratzl, P., “Actuation Systems in Plants as Prototypes for Bioinspired DevicesPhilosophical Transactions of the Royal Society A, 367, pp.15411557 (2009).
4Vazifehdoostsaleh, A., Fatouraee, N., Navidbakhsh, M., and Izadi, F., “Numerical Analysis of the Sulcus Vocalis Disorder on the Function of the Vocal Folds,” Journal of Mechanics, 33, pp.513520 (2017).
5Vazifehdoostsaleh, A., Fatouraee, N., Navidbakhsh, M., and Izadi, F., “Three Dimensional FSI Modelling of Sulcus Vocalis Disorders of Vocal Folds,” Journal of Mechanics, 34, pp.791800 (2018).
6Sacca, B. and Niemeyer, C. M., “DNA Origami: The Art of Folding DNA,” Angewandte Chemie International Edition, 51, pp.5866 (2012).
7Dobson, C. M., “Protein Folding and Misfolding,” Nature, 426, pp.884896 (2003).
8Onala, C. D., Woodb, R. J. and Rusa, D., “An Origami-inspired Approach to Worm Robots,” IEEE/ASME Transactions on Mechatronics, 18, pp.430438 (2014).
9Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. and Rus, D., “An Untethered Miniature Origami Robot that Self-Folds, Walks, Swims, and Degrades,” IEEE International Conference on Robotics and Automation, Seattle, USA (May 2530, 2015).
10Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., and Sasaki, M., “Self-Deployable Origami Stent Grafts as a Biomedical Application,” Materials Science and Engineering A, 419, pp.131137 (2006).
11Shim, T. S., Kim, S. H., Heo, C. J., Jeon, H. C., Yang, S. M., “Controlled Origami Folding of Hydrogel Bilayers with Sustained Reversibility for Robust Microcarriers,” Angewandte Chemie InternationalEdition, 51, pp.14201423 (2012).
12Song, Z., Ma, T., Tang, R., Cheng, Q., Wang, X., Krishnaraju, D., Panat, R., Chan, C. K., Yu, H. and Jiang, H., “Origami Lithium-Ion Batteries,” NatureCommunications, 5, 3140 (2014).
13Tang, R., Huang, H., Tu, H., Liang, H., Liang, M., Song, Z., Xu, Y., Jiang, H. and Yu, H., “Origami-Enabled Deformable Silicon Solar Cells,” Applied Physics Letters, 104, 083501 (2014).
14Morgan, J., Magleby, S. P. and Howell, L. L., “An Approach to Designing Origami-Adapted Aerospace Mechanisms,” Journal of MechanicalDesign, 138, 052301 (2016).
15Malekshahi, A., Shirazi, K. H., and Shishehsaz, M.,“Axial Crushing of Prismatic Multi-Corner Metal Columns Considering Plastic Hardening and Curvature,” Journal of Mechanics, DOI:10.1017/jmech.2018.2 (2018).
16Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S.P. and Howell, L. L., “Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism,” Smart Materials and Structures, 23, 094009 (2014).
17Koh, J., Kim, S. and Cho, K., “Self-Folding Origami Using Torsion Shape Memory Alloy Wire Actuators,” Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, New York, USA (August 17-20, 2014).
18Tolley, M. T., Felton, S. M., Miyashita, S., Aukes, D., Rus, D. and Wood, R. J., “Self-Folding Origami: Shape Memory Composites Activated by Uniform Heating,” Smart Materials and Structures, 23, 094006 (2014).
19Miyashita, S., DiDio, I., Ananthabhotla, I., An, B., Sung, C., Arabagi, S. and Rus, D., “Folding Angle Regulation by Curved Crease Design for Self-Assembling Origami Propellers,” Journal of Mechanisms and Robotics, 7, 021013 (2015).
20Shigemune, H., Maeda, S., Hara, Y., Hosoya, N. and Hashimoto, S., “Origami Robot: A Self-Folding Paper Robot with An Electrothermal Actuator Created by Printing,” IEEE/ASME Transactions on Mechatronics, 21, pp.27462754 (2016).
21Na, J.-H, Evans, A. A., Bae, J., Chiappelli, M. C., Santangelo, C. D., Lang, R. J., Hull, T. C. and Hayward, R. C., “Programming Reversibly Self-Folding Origami with Micropatterned Photo-Crosslinkable Polymer Trilayers,” Advanced Materials, 27, pp.7985 (2015).
22Mu, J., Hou, C., Wang, H., Li, Y., Zhang, Q. and Zhu, M., “Origami-Inspired Active Graphene-Based Paper for Programmable Instant Self-Folding,” Science advances, 1, e1500533 (2015).
23Ryu, J., D’Amato, M., Cui, X., Long, K. N., Qi, H.J. and Dunn, M. L., “Photo-Origami—Bending and Folding Polymers with Light,” Applied Physics Letters, 100, 161908 (2012).
24Zanardi Ocampo, J. M., Vaccaro, P. O., Kubota, K., Fleischmann, T., Wang, T. S., Aida, T., Ohnishi, T., Sugimura, A., Izumoto, R., Hosoda, M. and Nashima, S., “Characterization of Gaas-Based Micro-Origami Mirrors by Optical Actuation,” Microelectronic Engineering, 73-74, pp.429434 (2004).
25McGough, K., Ahmed, S., Frecker, M. and Ounaies, Z., “Finite Element Analysis and Validation of Dielectric Elastomer Actuators Used for Active Origami,” Smart Materials and Structures, 23, 094002 (2014).
26Ahmed, S., Arrojado, E., Sigamani, N. and Ounaies, Z., “Electric Field Responsive Origami Structures Using Electrostriction Based Active Materials,” Proceedings of SPIE, 9432, 943206 (2015).
27Okuzaki, H., Saido, T., Suzuki, H., Hara, Y. and Yan, H., “A Biomorphic Origami Actuator Fabricated by Folding A Conducting Paper,” Journal of Physics: Conference Series, 127, 012001 (2008).
28Pineirua, M., Bico, J. and Roman, B., “Capillary Origami Controlled by an Electric Field,” Soft Matter, 6, pp.44914496 (2010).
29Martinez, R. V., Fish, C. R., Chen, X. and Whitesides, G. M., “Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic ActuatorsAdvanced Functional Materials, 22, pp.13761384 (2012).
30Paez, L., Agarwal, G. and Paik, J., “Design and Analysis of a Soft Pneumatic Actuator with Origami Shell Reinforcement,” Soft Robotics, 3, pp.109119 (2016).
31Kuribayashi-Shigetomi, K., Onoe, H. and Takeuch, S., “Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force,” PLOS ONE, 7, e51085 (2012).

Keywords

A REVIEW OF ACTUATION FORCE IN ORIGAMI APPLICATIONS

  • S. R. Wu (a1), T. H. Chen (a1) (a2) and H. Y. Tsai (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed