Skip to main content Accessibility help

Predicting Failure Behavior of Polymeric Composites Using a Unified Constitutive Model

  • M. J. Vallejo (a1) and R. A. Tarefder (a1)


This study predicts the failure behavior of an IM7/977-2 carbon epoxy composite material through a unified constitutive model. The traction-separation response and damage initiation and evolution behavior were studied by modeling a composite double cantilever beam subjected to a Mode I delamination. Damage within the composite panels was also taken into consideration through the use of the disturbed state concept (DSC). The finite element modeling software Abaqus was used to model the failure behavior of the composite using a unified constitutive modeling approach. The finite element model was validated by comparing the model results to referenced laboratory testing performed on IM7/977-2 carbon epoxy composite. The results of the finite element modeling performed in this study are in good agreement with the referenced laboratory testing. The damaged states associated with various stages of loading are presented in this study.


Corresponding author

**Assistant Professor, corresponding author


Hide All
1. Sane, S. M, Desai, C. S., and Jenson, J. W. et al. , “Disturbed State Constitutive Modeling of Two Pleistocene Tills,” Quaternary Science Reviews, 27, pp. 267283 (2008).
2. Desai, C. S., “Mechanics of Materials and Interfaces: The Disturbed State Concept,” CRC Press LLC (2001).
3. Abaqus Analysis Users Manual, v. 6.7, Dassault Systemes (2007).
4. Hyer, M. W., “Stress Analysis of Fiber-Reinforced Composite Materials,” Second Edition, DEStech Publishers Inc., Lancaster, PA (2008).
5. Diehl, T., “On Using a Penalty-Based Cohesive- Zone Finite Element Approach, Part I: Elastic Solution Benchmarks,” International Journal of Adhesion and Adhesives, 28, pp. 237255 (2008).
6. Johnson, W. S., Pavlick, M. M. and Oliver, M. S., “Determination of Interlaminar Toughness of IM7/977-2 Composites at Temperature Extremes and Different Thicknesses,” Final Report, NASA Grant Number NAG-1-02003 (2005).
7. “Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites,” American Society for Testing and Materials (ASTM) (2007).
8. Hexcel® HexTow® IM7 Carbon Fiber Product Data Sheet, accessed on 2/11/2010.
9. Cycom® 977-2 Toughened Epoxy Resin Data Sheet, (February 11, 2010).
10. Parry, D. J. and Al-Hazmi, F. S., “Stress-Strain Behavior of IM7/977-2 and IM7/APC2 Carbon Fibre Composites at Low and High Strain Rates,” Journal de Physique, 110, pp. 5762 (2003).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed