Skip to main content Accessibility help

The Optimal Design of Multi-Chamber Side Mufflers Equipped with Perforated Cross-Flow Tubes and Intruding Tubes using Simulated Annealing

  • Y.-C. Chang (a1) and M.-C. Chiu (a2)


Research on new techniques of side-inlet/outlet mufflers equipped with internal non-perforated intruding tubes has been discussed in recent literature; however, the research work of multi-chamber sideinlet/outlet mufflers in conjunction with cross-flow tubes and open-ended perforated intruding tubes which may efficiently increase the acoustical performance is rare. Therefore, the main purpose of this paper is not only to analyze the sound transmission loss (STL) of three kinds of side-inlet/outlet mufflers (a three-chamber muffler with cross-flow tubes, a five-chamber muffler with cross-flow tubes and a nonperforated tube, and a five-chamber muffler with cross-flow tubes and a perforated tube) but also to optimize their best design shape within a limited space.

In this paper, both the generalized decoupling technique and plane wave theory in solving the coupled acoustical problem are used. A four-pole system matrix in evaluating the acoustic performance is also deduced in conjunction with a simulated algorithm (SA). A numerical case in finding the optimal STL of mufflers, which is constrained within a basement with a side-inlet/outlet, at targeted tones has been introduced. Before the optimization is carried out, an accuracy check of the mathematical model is performed. Results reveal that the maximal STL is precisely located at the desired target tone. Moreover, it has been seen that mufflers with more chambers will increase the acoustic performance for both pure tone and broadband noise. Additionally, the acoustical performance of mufflers conjugated with perforated intruding tubes is superior to those equipped with non-perforated tubes.

Consequently, the approach used for seeking the optimal design of the STL proposed in this study is indeed easy and quite effective.


Corresponding author

*Associate Professor, corresponding author


Hide All
1. Magrab, E. B., Environmental Noise Control, John Wiley and Sons, New York (1975).
2. Davis, D. D., Stokes, J. M. and Moorse, L., “Theoretical and Experimental Investigation of Mufflers with Components on Engine Muffler Design,” NACA Report, 1192 (1954).
3. Yeh, L. J., Chang, Y. C., Chiu, M. C. and Lai, G. J., “Computer-aided Optimal Design of a Single-chamber Muffler with Side Inlet/outlet Under Space Constraints,” Journal of Marine Science and Technology, 11, pp. 18 (2003).
4. Chang, Y. C., Yeh, L. J. and Chiu, M. C., “Numerical Studies on Constrained Venting System with Side Inlet/outlet Mufflers by GA Optimization,” Acta Acustica, 90, pp. 111 (2004).
5. Chiu, M. C., “Shape Optimization of Double-chamber Side Mufflers with Extended Tube by Using Four-pole Matrix and Simulated Annealing Method,” Journal of Mechanics, 24, pp. 3143 (2008).
6. Chang, Y. C., Yeh, L. J. and Chiu, M. C., “GA Optimization on Single-chamber Muffler Hybridized with Extended Tube Under Space Constraints,” Archives of Acoustics, 29, pp. 577596 (2004).
7. Sullivan, J. W. and Crocker, M. J., “Analysis of Concentric Tube Resonators Having Unpartitioned Cavities,” Acoustical Society of America, 64, pp. 207215 (1978).
8. Sullivan, J. W., “A Method of Modeling Perforated Tube Muffler Components I: Theory,” Acoustical Society of America, 66, pp. 772778 (1979).
9. Sullivan, J. W., “A Method of Modeling Perforated Tube Muffler Components II: Theory,” Acoustical Society of America, 66, pp. 779788 (1979).
10. Sathyanarayana, Y. and Munjal, M. L., “A Hybrid Approach for Aeroacoustic Analysis of the Engine Exhaust System,” Applied Acoustics, 60, pp. 425450 (2000).
11. Thawani, P. T. and Jayaraman, K., “Modeling and Applications of Straight-through Resonators,” Acoustical Society of America, 73, pp. 13871389 (1983).
12. Rao, K. N. and Munjal, M. L., “Experimental Eevaluation of Impedance of Perforates with Grazing Flow,” Journal of Sound and Vibration, 123, pp. 283295 (1986).
13. Munjal, M. L., Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, John Wiley & Sons, New York (1987).
14. Peat, K. S., “A Numerical Decoupling Analysis of Perforated Pipe Silencer Elements,” Journal of Sound and Vibration, 123, pp. 199212 (1988).
15. Wang, C. N., The Application of Boundary Element Method in the Noise Reduction Analysis for the Automotive Mufflers, Doctor thesis, Taiwan University (1992).
16. Chiu, M. C. and Chang, Y. C., “Shape Optimization of Multi-chamber Cross-flow Mufflers by SA Optimization,” Journal of Sound and Vibration, 312, pp. 526550 (2008).
17. Chiu, M. C., Yeh, L. J., Chang, Y. C. and Lan, T. S., “Shape Optimization of Single-chamber Mufflers with Side Inlet/outlet by Using Boundary Element Method, Mathematic Gradient Method and Genetic Algorithm,” Tamkang Journal of Science and Engineering, 12, pp. 8598 (2009).
18. Rardin, R. L., Optimization in Operations Research, Prentice Hall, New Jersey (1998).
19. Laurence, W., Integer Programming, John Wiley & Sons, New York (1998).
20. Vanderplaats, N. G., Numerical Optimization Techniques for Engineering Design: With Applications, McGraw-Hill, New York (1984).
21. Weeber, K., Ratnajeevan, S. and Hoole, H., “Geometric Parametrization and Constrained Optimization Techniques in the Design of Salient Pole Synchronous Machines,” IEEE Transaction on Magnetics, 28, pp. 19481960 (1992).
22. Reklaitis, G. V., Ravindran, A. and Ragsdell, K. M., Engineering Optimization: Method and Applications, Wiley, New York (1984).
23. Glover, F., “Heuristics for Inter Programming Using Surrogate Constraints,” Decision Sciences, 8, pp. 156166 (1977).
24. Chang, Y. C., Yeh, L. J., Chiu, M. C. and Lai, G. J., “Shape Optimization on Constrained Single-layer Sound Absorber by Using GA Method and Mathematical Gradient Methods,” Journal of Sound and Vibration, 286, pp. 941961 (2005).
25. Metropolis, A., Rosenbluth, W., Rosenbluth, M. N., Teller, H. and Teller, E., “Equation of Static Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21, pp. 10871092 (1953).
26. Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P., “Optimization by Simulated Annealing,” Science, 220, pp. 671680 (1983).
27. Nolle, L., Armstrong, D. A., Hopgood, A. A. and Ware, J. A., “Simulated Annealing and Genetic Algorithms Applied to Finishing Mill Optimization for Hot Rolling of Wide Steel Strip,” International of Knowledge-Based Intelligent Engineering System, 6, pp. 104111 (2002).
28. Munjal, M. L., “Plane Wave Analysis of Side Inlet/outlet Chamber Mufflers with Mean Flow,” Applied Acoustics, 52, pp. 165175 (1997).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed