Skip to main content Accessibility help

Optimal Design of a Vibration-Based Electromagnetic Energy Harvester Using a Simulated Annealing Algorithm

  • M.-C. Chiu (a1), Y.-C. Chang (a2), L.-J. Yeh (a2) and C.-H. Chung (a2)


This paper presents the optimal design of an electromagnetic vibration-based generator using the simulated annealing method (SA). To optimally extract the vibrational energy of a system vibrating at a specific frequency, the selected mass and spring stiffness of a resonant vibration is required. The relationship between induced energy and the generator's structure, its permanent magnet height and diameter, number of turns, and wire diameter in a single air coil are discussed. Also, a prototype of the vibrationbased electrical generator is built and tested via a shaker excited at resonance frequency and input amplitude of 0.06mm. Consequently, results reveal that the design parameters (permanent magnet height and diameter, number of turns, and wire diameter) play essential roles in maximizing electrical power.


Corresponding author

* Corresponding author (


Hide All
1.Mitcheson, P. D., Green, T. C., Yeatman, E. M. and Holmes, A. S., “Architectures for Vibration-driven Micropower Generators,” Journal of Microelectromechanical Systems, 13, pp. 429440 (2004).
2.Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S. and Green, T. C., “Energy Harvesting from Human and Machine Motion for Wireless Electronic Devices,” IEEE, 96, pp. 14571486 (2008).
3.Saha, C. R., O'Donnell, T., Loder, H., Beeby, S. and Tudor, J., “Optimization of an Electromagnetic Energy Harvesting Device,” IEEE Transactions on Magnetics, 42, pp. 35093511 (2006).
4.Constantinou, P., Mellor, P. H. and Wilcox, P., “Model of an Electromagnetic Vibration Generator,” Proceedings of the 41st International Universities Power Engineering Conference, 2006. UPEC '06., 1, pp. 610 (2006).
5.GlynneJones, P., “An Electromagnetic, Vibration-powered Generator for Intelligent Sensor Systems,” Sensors and Actuators A: Physical, 110, pp. 344349 (2004).
6.Constantinou, P., Mellor, P. H. and Wilcox, P., “A Model of a Magnetically Sprung Vibration Generator for Power Harvesting Applications,” IEEE International Electric Machines & Drives Conference, IEMDC'07., 1, pp. 725730 (2007).
7.McCarthy, K., Bash, M. and Pekarek, S., “Design of an Air-core Linear Generator Drive for Energy Harvest Applications,” Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, APEC pp. 18321838 (2008).
8.Li, H. and Pillay, P., “A Methodology to Design Linear Generators for Energy Conversion of Ambient Vibrations,” IEEE Industry Applications Society Annual Meeting, IAS'08 (2008).
9.Saha, C. R., O'Donnell, T., Wang, N. and McCloskey, P., “Electromagnetic Generator for Harvesting Energy from Human Motion,” Sensors and Actuators A: Physical, 147, pp. 248253 (2008).
10.Morais, R., Silva, N., Santos, P., Frias, C., Ferreira, J., Ramos, A., Simõesd, J., Baptista, J. and Reis, M., “Permanent Magnet Vibration Power Generator as an Embedded Mechanism for Smart Hip Prosthesis,” Procedia Engineering, 5, pp. 766769 (2010).
11.Kimihiko, N., Takashi, S., Atsushi, N. and Tomohiro, K., “Portable Electrodynamic Generator Using Vibration on Walking Human Body,” Electromagnetics Symposium Proceedings, 14, pp. 347350 (2002).
12.Stephen, N. G., “On Energy Harvesting from Ambient Vibration,” Journal of Sound and Vibration, 293, pp. 409425 (2006).
13.Glover, F., “Heuristics for Inter Programming Using Surrogate Constraints,” Decision Sciences, 8, pp. 156166 (1977).
14.Chang, Y. C., Yeh, L. J., Chiu, M. C. and Lai, G. J., “Shape Optimization on Constrained Single-Layer Sound Absorber by Using GA Method and Mathematical Gradient Methods,” Journal of Sound and Vibration, 286, pp. 941961 (2005).
15.Metropolis, A., Rosenbluth, W., Rosenbluth, M. N., Teller, H. and Teller, E., “Equation of Static Calculations by Fast Computing Machines,” Journal of Chemical Physics, 21, pp. 10871092 (1953).
16.Kirkpatrick, S., Gelatt, C. D. and Vecchi, M. P. Jr., “Optimization by Simulated Annealing,” Science, 220, pp. 671680 (1983).
17.Chang, Y. C., Chiu, M. C. and Liu, W. C., “Shape Optimization of One-chamber Mufflers with Perforated Intruding Tubes Using a Simulated Annealing Method,” Journal of Marine Science and Technology, 18, pp. 597610 (2010).
18.Park, J. C., Bang, D. H. and Park, J. Y., “Micro-Fabricated Electromagnetic Power Generator to Scavenge Low Ambient Vibration,” IEEE Transactions on Magnetics, 46, pp. 19371942 (2010).
19.Bouendeu, E., Greiner, A., Smith, P. J. and Korvink, J. G., “Design Synthesis of Electromagnetic Vibration-Driven Energy Generators Using a Variational Formulation,” Journal of Microelectromechanical Systems, 20, pp. 466475 (2011).
20.Mikolanda, T., “Study of Permanent Magnets Force Interaction,” Ph. D Thesis, Technická Univerzita v Liberci, December 16th (2009).
21.Lallart, M., Anton, S. R. and Inman, D. J., “Design of a Frequency-Adjusting Device for Harvesting Energy from a Rotating Wheel,” Sensors and Actuators A, 159, pp. 196203 (2010).
22.Lallart, M., Anton, S. R. and Inman, D. J., “Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting,” Journal of Intelligent Material Systems and Structures, 21, pp. 897906 (2010).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed