Skip to main content Accessibility help

Numerical Methods for the Photoelastic Technique using Phase Shifting

  • C. A. Magalhaes (a1) (a2), P. S. Neto (a2), P. A. A. Magalhaes (a2) and C. S. de Barcellos (a3)


The objective of this research is to find new equations for a novel phase-shifting method in digital photoelasticity. Some innovations are proposed. In terms of phase-shifting, only the analyzer is rotated, and the other equations are deduced by applying a new numerical technique instead of the usual algebraic techniques. This approach can be used to calculate a larger sequence of images. Each image represents a pattern and a measurement of the stresses present in the object. A reduction in the difference between the theoretical and experimental values of stresses was obtained by increasing the number of images in the equations for calculating phase. Every photographic image has errors and random noise, but the uncertainties due to these effects can be reduced with a larger number of observations.


Corresponding author

* Corresponding author (


Hide All
1.Asundi, A. K., MATLAB for Photomechanics — A Primer, Elsevier Science, p. 67 (2002).
2.Asundi, A. K., Tong, L. and Boay, C. G., “Determination of Isoclinic and Isochromatic Parameters Using the Three-Load Method,” Measurement Science and Technology, 11, pp. 532544 (2000).
3.Ramesh, K., “Digital Photoelasticity,” Measurement Science and Technology, 11, p. 1826, doi:10.1088/0957-0233/11/12/704 (2000).
4.Chen, T. Y., Lee, H. L. and Chou, Y. C., “An Improved Two-Load Method for Whole-Field Complete Photoelastic Fringe Analysis,” Journal of Mechanics, 21, pp. 199203, doi: (2005).
5.Yao, X. F., Jian, L. H., Xu, W., Jin, G. C. and Yeh, H. Y., “Digital Shifting Photoelasticity with Optical Enlarged Unwrapping Technology for Local Stress Measurement,” Optics & Laser Technology, 37, pp. 582589 (2009).
6.Chang, C. W., Chen, P. H. and Lien, H. S., “Separation of Photoelastic Principal Stresses by Analytical Evaluation and Digital Image Processing,” Journal of Mechanics, 25, pp. 1925, doi: (2009).
7.Baek, T. H., Kim, M. S., Morimoto, Y. and Fujigaki, M., “Separation of Isochromatics and Isoclinics from Photoelastic Fringes in a Circular Disk by Phase Measuring Technique,” KSME International Journal, 16, pp. 175181 (2002).
8.Collett, E., Field Guide to Polarization, SPIE Press, Bellingham, Washington, U.S. (2005).
9.Ng, T. W., “Derivation of Retardation Phase in Computer-Aided Photoelasticity by Using Carrier Fringe Phase Shifting,” Applied Optics, 36, pp. 82598263 (1997).
10.Oh, J. T. and Kim, S. W., “Polarization-Sensitive Optical Coherence Tomography for Photoelasticity Testing of Glass/Epoxy Composites,” Optics Express, 11, pp. 16691676 (2003).
11.Magalhaes, P. A. A., Neto, P. S. and Barcellos, C. S., “Analysis of Shadow Moire Technique with Phase Shifting Using Generalisation of Carre Method,” Strain, 47, pp. e555e571, doi: 10.1111/j.1475–1305.2009.00655.x (2011).
12.Arellano, N. I. T., Zurita, G. R., Fabian, C. M. and Castillo, J. F. V., “Phase Shifts in the Fourier Spectra of Phase Gratings and Phase Grids: An Application for One-Shot Phase-Shifting Interferometry,” Optics Express, 16, pp. 1933019341 (2008).
13.Estrada, J. C., Servin, M. and Quiroga, J. A., “Noise Robust Linear Dynamic System for Phase Unwrapping and Smoothing,” Optics Express, 19, pp. 51265133 (2011).
14.Navarro, M. A., Estrada, J. C., Servin, M., Quiroga, J. A. and Vargas, J., “Fast Two-Dimensional Simultaneous Phase Unwrapping and Low-Pass Filtering,” Optics Express, 20, pp. 25562561 (2012).
15.Ramji, M. and Ramesh, K., “Whole Field Evaluation of Stress Components in Digital Photoelasticity — Issues, Implementation and Application,” Optics and Lasers in Engineering, 46, pp. 257271 (2008).
16.Ramji, M. and Ramesh, K., “Stress Separation in Digital Photoelasticity, Part A — Photoelastic Data Unwrapping and Smoothing,” Aerospace Science and Technology, 60, pp. 515 (2008).
17.Ramji, M. and Ramesh, K., “Stress Separation in Digital Photoelasticity, Part B — Whole Field Evaluation of Stress Components,” Aerospace Science and Technology, 60, pp. 1625 (2008).
18.Pinit, P. and Umezaki, E., “Digitally Whole-Field Analysis of Isoclinic Parameter in Photoelasticity by Four-Step Color Phase Shifting Technique,” Optics and Laser in Engineering, 45, pp. 795807 (2007).
19.Ashokan, K. and Ramesh, K., “Finite Element Simulation of Isoclinic and Isochromatic Phasemaps for Use in Digital Photoelasticity,” Experimental Techniques, 33, pp. 3844 (2009).
20.Ramesh, K., Digital Photoelasticity: Advanced Techniques and Applications, Springer-Verlag, Berlin, Germany, pp. 165178 (2000).
21.Patterson, E. A. and Wang, Z. F., “Towards Full Field Automated Photoelastic Analysis of Complex Components,” Strain, 27, pp. 4957 (1991).
22.Ramji, M. and Prasath, R. G. R., “Sensitivity of Isoclinic Data Using Various Phase Shifting Techniques in Digital Photoelasticity Towards Generalized Error Sources,” Optics and Lasers in Engineering, 49, pp. 11531167 (2011).
23.Chang, S. H. and Wu, H. H. P., “Improvement of Digital Photoelasticity Based on Camera Response Function,” Applied Optics, 50, pp. 52635270 (2011).
24.Ajovalasit, A., Petrucci, G. and Scafidi, M., “RGB Photoelasticity Applied to the Analysis of Membrane Residual Stress in Glass,” Measurement Science and Technology, 23, p. 025601, doi:10.1088/0957-0233/23/2/025601 (2012).
25.Buckberry, C. and Towers, D., “Automatic Analysis of Isochromatic and Isoclinic Fringes in Photoelasticity Using Phase Measuring Techniques,” Measurement Science and Technology, 6, p. 1227 doi:10.1088/0957-0233/6/9/001 (1995).
26.Quiroga, J. A. and Cano, A. G., “Automatic Determination of Isostatics in Two-Dimensional Photoelasticity,” Measurement Science and Technology, 11, p. 259, doi:10.1088/0957-0233/11/3/313 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed