Skip to main content Accessibility help
×
×
Home

Numerical Assessment of Compressive Deformation in Metal-Ceramic Multilayer Micro-Pillars

  • G. Tang (a1) (a2) and Y. L. Shen (a3)

Abstract

A numerical study was undertaken to investigate the mechanical properties of metal-ceramic multilayer micro-pillars under compression. The model system contains alternating layers of aluminum (Al) and silicon carbide (SiC) above a thick silicon (Si) substrate. The finite element analyses show that the pillar deformed in a non-uniform manner under compression, especially when a tapered side wall was included in the model. The heterogeneous feature of the structure plays a significant role in influencing the apparent stress-strain response. The elastic property of the pillar compares favorably with the true composite modulus, but a large discrepancy was found in the plastic response. The difference in deformation behavior between homogeneous pillars and multilayer pillars, along with other geometric effects, were examined in detail.

Copyright

Corresponding author

*Corresponding author (gltang@szu.edu.cn.)

References

Hide All
1.Misra, A., Kung, H., Hammon, D., Hoagland, R. G. and Nastasi, M., “Damage Mechanisms in Nanolayered Metallic Composites,” International Journal of Damage Mechanics, 12, pp. 365376 (2003).
2.Shinn, M., Hultman, L. and Barnett, S. A., “Growth, Structure, and Microhardness of Epitaxial Tin/Nbn Superlattices,” Journal of Materials Research, 7, pp. 901911 (1992).
3.Wiklund, U., Hedenqvist, P. and Hogmark, S., “Multilayer Cracking Resistance in Bending,” Surface and Coatings Technology, 97, pp. 773778 (1997).
4.Misra, A., Hirth, J. P. and Hoagland, R. G., “Length-Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multilayered Composites,” Acta Materialia, 53, pp. 48174824 (2005).
5.Tjong, S. C. and Chen, H., “Nanocrystalline Materials and Coatings,” Materials Science & Engineering R-Reports, 45, pp. 188 (2004).
6.Mayrhofer, P. H., Mitterer, C., Hultman, L. and Clemens, H., “Microstructural Design of Hard Coatings,” Progress in Materials Science, 51, pp. 10321114 (2006).
7.Chawla, N., “Metal Matrix Composites in Automotive Applications,” Advanced Materials & Processes, 164, pp. 2931 (2006).
8.Chawla, N. and Chawla, K. K., “Metal-Matrix Composites in Ground Transportation,” The Journal of The Minerals, Metals & Materials Society, 58, pp. 6770 (2006).
9.Chawla, N. and Ganesh, V. V., “Fatigue Crack Growth of SiC Particle Reinforced Metal Matrix Composites,” International Journal of Fatigue, 32, pp. 856863 (2010).
10.Williams, J. J., Segurado, J., LLorca, J. and Chawla, N., “Three Dimensional (3D) Microstructure-Based Modeling of Interfacial Decohesion in Particle Reinforced Metal Matrix Composites,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 557, pp. 113118 (2012).
11.Gouldstone, A. et. al., “Indentation Across Size Scales and Disciplines: Recent Developments in Experimentation and Modeling,” Acta Materialia, 55, pp. 40154039 (2007).
12.Tang, G., Shen, Y. L., Singh, D. R. P. and Chawla, N., “Indentation Behavior of Metal-Ceramic Multilayers at the Nanoscale: Numerical Analysis and Experimental Verification,” Acta Materialia, 58, pp. 20332044 (2010).
13.Singh, D. R. P. et al., “Residual Stress Characterization of Al/SiC Nanoscale Multilayers Using X-Ray Synchrotron Radiation,” Thin Solid Films, 519, pp. 759765 (2010).
14.Li, Y. P. et al., “Comparative Investigation of Strength and Plastic Instability in Cu/Au and Cu/Cr Multilayers by Indentation,” Journal of Materials Research, 24, pp. 728735 (2009).
15.Zhang, H. T. et al., “In Situ Mechanical Characterization of CoCrCuFeNi High-Entropy Alloy Micro/ Nano-Pillars for Their Size-Dependent Mechanical Behavior,” Materials Research Express, 3 (2016).
16.Choi, W. S., De Cooman, B. C., Sandlobes, S. and Raabe, D., “Size and Orientation Effects in Partial Dislocation-Mediated Deformation of Twinning-Induced Plasticity Steel Micro-Pillars,” Acta Materialia, 98, pp. 391404 (2015).
17.Xiao, Y. et al., “Investigation of the Deformation Behavior of Aluminum Micropillars Produced by Focused Ion Beam Machining Using Ga and Xe Ions,” Scripta Materialia, 127, pp. 191194 (2017).
18.Shan, Z. W., Mishra, R. K., Syed Asif, S. A., Warren, O. L. and Minor, A. M., “Mechanical Annealing and Source-Limited Deformation in Submicrometre-Diameter Ni Crystals,” Nature Materials, 7, pp. 115119 (2008).
19.Davydok, A. et al., “Analysis of the Full Stress Tensor in a Micropillar: Ability of and Difficulties Arising during Synchrotron Based mu Laue Diffraction,” Materials & Design, 108, pp. 6875 (2016).
20.Greer, J. R. and Nix, W. D., “Nanoscale Gold Pillars Strengthened through Dislocation Starvation,” Physical Review B, 73, 245410 (2006).
21.Liu, M. C. et al., “Assessing the Interfacial Strength of an Amorphous-Crystalline Interface,” Acta Materialia, 61, pp. 33043313 (2013).
22.Guo, X. L. et al., “Interfacial Strength and Deformation Mechanism of SiC-Al Composite Micro-Pillars,” Scripta Materialia, 114, pp. 5659 (2016).
23.Schoeppner, R. L. et al., “Coherent Interfaces Increase Strain-Hardening Behavior in Tri-Component Nano-Scale Metallic Multilayer Thin Films,” Materials Research Letters, 3, pp. 114119 (2015).
24.Wang, J. T., Yang, C. H. and Hodgson, P. D., “Extrinsic Size Effect in Microcompression of Polycrystalline Cu/Fe Multilayers,” Scripta Materialia, 69, pp. 626629 (2013).
25.Zhang, J. Y. et al., “Length Scale-Dependent Deformation Behavior of Nanolayered Cu/Zr Micropillars,” Acta Materialia, 60, pp. 16101622 (2012).
26.Mayer, C. R. et al., “Anisotropy, Size, and Aspect Ratio Effects on Micropillar Compression of Al-SiC Nanolaminate Composites,” Acta Materialia, 114, pp. 2532 (2016).
27.Dayal, P., Quadir, M. Z., Kong, C., Savvides, N. and Hoffman, M., “Transition from Dislocation Controlled Plasticity to Grain Boundary Mediated Shear in Nanolayered Aluminum/Palladium Thin Films,” Thin Solid Films, 519, pp. 32133220 (2011).
28.Mayer, C. R., Molina-Aladareguia, J. and Chawla, N., “Three Dimensional (3D) Microstructure-Based Finite Element Modeling of Al-SiC Nanolaminates Using Focused Ion Beam (FIB) Tomography,” Materials Characterization, 120, pp. 369376 (2016).
29.Tang, G., Singh, D. R. P., Shen, Y. L. and Chawla, N., “Elastic Properties of Metal-Ceramic Nanolaminates Measured by Nanoindentation,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 502, pp. 7984 (2009).
30.Tang, G. and Shen, Y. L., “Analysis of Indentation-Derived Effective Elastic Modulus of Metal-Ceramic Multilayers,” International Journal of Mechanics and Materials in Design, 4, pp. 391398 (2008).
31.Lotfian, S. et al., “High Temperature Micropillar Compression of Al/SiC Nanolaminates,” Acta Materialia, 61, pp. 44394451 (2013).
32.Singh, D. R. P., Chawla, N., Tang, G. and Shen, Y. L., “Micropillar Compression of Al/SiC Nanolaminates,” Acta Materialia, 58, pp. 66286636 (2010).
33.Chawla, N. and Chawla, K. K., “Microstructure-Based Modeling of the Deformation Behavior of Particle Reinforced Metal Matrix Composites,” Journal of Materials Science, 41, pp. 913925 (2006).
34.Jones, R. M., Mechanics of Composite Materials. 1975, Washington, D.C: Scripta Book Company.
35.Shen, Y. L., Finot, M., Needleman, A. and Suresh, S., “Effective Elastic Response of 2-Phase Composites,” Acta Metallurgica Et Materialia, 42, pp. 7797 (1994).
36.Sneddon, IN., “The Relation between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile,” International Journal of Engineering Science, 3, pp. 4757 (1965).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Mechanics
  • ISSN: 1727-7191
  • EISSN: 1811-8216
  • URL: /core/journals/journal-of-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed