1. Applied Technology Council ATC-32, Improved Seismic Design Criteria for California Bridges: Provisional Recommendations, Redwood City, California (1996).
2. Railway Technical Research Institute (RTRI), Seismic Design Code for Railway Structures, Tokyo (in Japanese) (1999).
3. Japan Road Association (JRA), Specifications for Highway Bridges, Part V, Seismic Design, Tokyo (in Japanese) (2002).
4. Park, R. and Falconer, T. J., “Ductility of Prestressed Concrete Piles Subjected to Simulated Seismic Loading,” PCI Journal, 28, pp. 112–144 (1983).
5. Banerjee, S., Stanton, J. F. and Hawkins, N. M., “Seismic Performance of Precast Concrete Bridge Piles,” Journal of Structural Engineering, ASCE, 113, pp. 381–396 (1987).
6. Budek, A. M., “The Inelastic Behavior of Reinforced Concrete Piles and Pile Shafts,” PhD Dissertation, University of California, San Diego (1997).
7. Budek, A. M., Pristley, M. J. N. and Benzoni, G., “Inelastic Seismic Response of Bridge Drilled-Shaft RC Pile/Columns,” Journal of Structural Engineering, ASCE, 126, pp. 510–517 (2000).
8. Budek, A. M. and Benzoni, G., “Obtaining Ductile Performance from Precast, Prestressed Concrete Piles,” PCI Journal, 54, pp. 64–80 (2009).
9. Chai, Y. H., “Flexural Strength and Ductility of Extended Pile-Shafts. I: Analytical Model,” Journal of Structural Engineering, ASCE, 128, pp. 586–594 (2002).
10. Chai, Y. H. and Hutchinson, T. C., “Flexural Strength and Ductility of Extended Pile-Shafts. II: Experimental Study,” Journal of Structural Engineering, ASCE, 128, pp. 595–602 (2002).
11. Song, S. T., Chai, Y. H. and Hale, T. H., “Analytical Model for Ductility Assessment of Fixed-Head Concrete Piles,” Journal of Structural Engineering, ASCE, 131, pp. 1051–1059 (2005).
12. Chiou, J. S., Yang, H. H. and Chen, C. H., “Use of Plastic Hinge Model in Nonlinear Pushover Analysis of a Pile,” Journal of Geotechnical and Geoenvironmental Engineeering, ASCE, 135, pp. 1341–1346 (2009).
13. Matlock, H., “Correlations for Design of Laterally Loaded Piles in Clay,” Proceedings of 2nd Annual Offshore Technology Conference, Houston, Texas, (OTC 1204), pp. 577–594 (1970).
14. Reese, L. C. and Welch, R. C., “Lateral Loading of Deep Foundations in Stiff Clay,” Proceedings, ASCE, 101, GT7, pp. 633–649 (1975).
15. Bhushan, K., Haley, S. C. and Fong, P. T., “Lateral Load Tests on Drilled Piers in Stiff Clays,” Journal of the Geotechnical Engineering Division, ASCE, 105, GT8, pp. 969–985 (1979).
16. Reese, L. C., Isenhower, W. M. and Wang, S. T., Analysis and Design of Shallow and Deep Foundations, John Wiley & Sons, Inc (2006).
17. Kowalsky, M. J., “Deformation Limit States for Circular Reinforced Concrete Bridge Columns,” Journal of Structural Engineering, ASCE, 126, pp. 869–878 (2000).
18. Chadwell, C., UC Fyber: Cross Section Analysis Structural Software, Version 2.2, Department of Civil Engineering, University of California, Berkeley (1999).
19. Mander, J. B., Priestley, M. J. N. and Park, R., “Theoretical Stress-Strain Model for Confined Concrete,” Journal of the Structural Division, ASCE, 114, pp. 1804–1826 (1988).
20. Priestley, M. J. N., Seible, F. and Calvi, G. M., Seismic Design and Retrofit of Bridges, Wiley- Interscience, New York (1996).
21. Chai, Y. H. and Song, S. T., “Assessment of Seismic Performance of Extended Pile-Shafts,” Earthquake Engineering and Structural Dynamics, 128, pp. 1937–1954 (2003).
22. Budek, A. M. and Benzoni, G., “Rational Seismic Design of Precast, Prestressed Concrete Piles,” PCI Journal, 53, pp. 40–53 (2008).
23. Gere, J. M. and Timoshenko, S. P., Mechanics of Materials, Wadsworth, Inc., California (1984).
24. SAP 2000, Basic Analysis Reference, Version 8, Computers & Structures, Berkeley, California, USA (2002).