1.Mei, F. X., Inverse Problems of Dynamics, National Defense Industry Press, Beijing (2009).

2.Hertz, H. R., “Die Prinzipien Der Mechanik,” Gesammelte Werke, Leibzing, p. 37 (1894).

3.Li, Z. P., Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties, Beijing Polytechnic University Press, Beijing (1993).

4.Luo, S. K., “New Types of the Lie Symmetries and Conserved Quantities for a Relativistic Hamilton System,” Chinese Physics Letters, 20, pp. 597–599 (2003).

5.Luo, S. K., “A Set of Lie Symmetrical Conservation Law for Rotational Relativistic Hamiltonian Systems,” Communications in Theoretical Physics, 40, pp. 265–268 (2003).

6.Cai, J. L., “Conformal Invariance and Conserved Quantity for the Nonholonomic System of Chetaev’s type,” International Journal of Theoretical Physics, 49, pp. 201–211 (2010).

7.Jiang, W. A., Li, Z. J. and Luo, S. K., “Mei Symmetries and Mei Conserved Quantities for Higher-Order Nonholonomic Constraint Systems,” Chinese Physics B, 20, p. 030202 (2011).

8.Xia, L. L., Li, Y. C., Wang, J. and Hou, Q. B., “Symmetries and Mei Conserved Quantities of Nonholonomic Controllable Mechanical Systems,” Communications in Theoretical Physics, 46, pp. 415–418 (2006).

9.Noether, A. E., “Invariante Variationsprobleme,” Nachr. d. König. Gesellsch d. Wiss. zu Göttingen, Math-phys. Klasse, pp. 235–257(1918).

10.Lutzky, M., “Dynamical Symmetries and Conserved Quantities,” Journal of Physics A: Mathematical and General, 12, pp. 973–981 (1979).

11.Hojman, S. A., “A New Conservation Law Constructed Without Using Either Lagrangians or Hamiltonians,” Journal of Physics A: Mathematical and General, 25, pp. L291–L295 (1992).

12.Mei, F. X., “Form Invariance of Lagrange System,” Journal of Beijing Institute of Technology, 9, pp. 120–124 (2000).

13.Fan, J. H., “Mei Symmetry and Lie Symmetry of the Rotational Relativistic Variable Mass System,” Communications in Theoretical Physics, 40, pp. 269–272 (2003).

14.Jia, L. Q., Xie, J. F. and Luo, S. K., “Mei Symmetry and Mei Conserved Quantity of Nonholonomic Systems with Unilateral Chetaev Type in Nielsen Style,” Chinese Physics B, 17, pp. 1560–1564 (2008).

15.Xia, L. L. and Chen, L. Q., “Mei Symmetries and Conserved Quantities for Non-Conservative Hamiltonian Difference Systems with Irregular Lattices,” Nonlinear Dynamics, 70, pp. 1223–1230 (2012).

16.Jiang, W. A. and Luo, S. K., “Mei Symmetry Leading to Mei Conserved Quantity of Generalized Hamiltonian System,” Acta Physica Sinica, 60, p. 060201 (2011).

17.Mei, F. X., Symmetries and Conserved Quantities of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing (2004).

18.Luo, S. K. and Zhang, Y. F., Advances in the Study of Dynamics of Constrained Systems, Science Press, Beijing (2008).

19.Wu, H. B. and Mei, F. X., “Symmetry of Lagrangians of Holonomic Variable Mass System,” Chinese Physics B, 21, p. 064501 (2012).

20.Jiang, W. A., Li, L., Li, Z. J. and Luo, S. K., “Lie Symmetrical Perturbation and a New Type of Non-Noether Adiabatic Invariants for Disturbed Generalized Birkhoffian Systems,” Nonlinear Dynamics, 67, pp. 1075–1081 (2012).

21.Han, Y. L., Wang, X. X., Zhang, M. L. and Jia, L. Q., “Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Chetaev Nonholonomic System,” Nonlinear Dynamics, 73, pp. 357–361 (2013).

22.Jia, L. Q., Wang, X. X., Zhang, M. L. and Han, Y. L., “Special Mei Symmetry and Approximate Conserved Quantity of Appell Equations for a Weakly Nonholonomic System,” Nonlinear Dynamics, 69, pp. 1807–1812 (2012).

23.Luo, Y. P., “Generalized Conformal Symmetries and its Application of Hamilton Systems,” International Journal of Theoretical Physics, 48, pp. 2665–2671 (2009).

24.Jia, L. Q., Zheng, S. W and Zhang, Y. Y., “Mei Symmetry and Mei Conserved Quantity of Nonholonomic Systems of Non-Chetaev’s Type in Event Space,” Acta Physica Sinica, 56, pp. 5575–5579 (2007).

25.Jiang, W. A. and Luo, S. K., “A New Type of Non-Noether Exact Invariants and Adiabatic Invariants of Generalized Hamiltonian Systems,” Nonlinear Dynamics, 67, pp. 475–482 (2012).

26.Jiang, W A., Li, L., Li, Z. J. and Luo, S. K., “Lie Symmetrical Perturbation and a New Type of Non-Noether Adiabatic Invariants for Disturbed Generalized Birkhoffian Systems,” Nonlinear Dynamics, 67, pp. 1075–1081 (2012).

27.Ibort, L. A. and Solano, J. M., “On the Inverse Problem of the Calculus of Variations for a Class of Coupled Dynamical Systems,” Inverse Problems, 7, pp. 713–725 (1991).

28.Liu, F. L. and Mei, F. X., “Formulation and Solution for Inverse Problem of Nonholonomic Dynamics,” Applied Mathematics and Mechanics (English Edition), 14, pp. 327–332 (1993).

29.Li, G. C. and Mei, F. X., “An Inverse Problem in Analytical Dynamics,” Chinese Physics B, 15, pp. 1669–1671 (2006).

30.Mei, F. X., Me, J. F. and Gang, T. Q., “An Inverse Problem of Dynamics of a Generalized Birkhoff System,” Acta Physica Sinica, 57, pp. 4649–4651 (2008).

31.Ding, G T., “New Kind of Inverse Problems of Noether’s Theory for Hamiltonian Systems,” Acta Physica Sinica, 59, pp. 1423–1427 (2010).

32.Menini, L. and Tornambe, A., “A Lie Symmetry Approach for the Solution of the Inverse Kinematics Problem,” Nonlinear Dynamics, 69, pp. 1965–1977 (2012).

33.Fang, J. H., “Study of the Lie Symmetries of a Relativistic Variable Mass System,” Chinese Physics, 11, pp. 313–318 (2002).

34.Xia, L. L. and Li, Y. C., “Non-Noether Conserved Quantity for Relativistic Nonholonomic Controllable Mechanical System with Variable Mass,” Acta Physica Sinica, 57, pp. 4652–4656 (2008).

35.Cai, J. L., “Conformal Invariance of Mei Symmetry for the Holonomic System with Variable Mass,” Chinese Journal of Physics, 48, pp. 728–735 (2010).

36.Cui, J. C., Zhang, Y. Y., Yang, X. F. and Jia, L. Q., “Mei Symmetry and Mei Conserved Quantity of Appell Equations for Avariable Mass Holonomic System,” Chinese Physics B, 19, p. 030304 (2010).

37.Cai, J. L., “Conformal Invariance of Mei Symmetry for the Non-Holonomic Systems of Non-Chetaev’s type,” Nonlinear Dynamics, 69, pp. 487–493 (2012).

38.Wang, S. Y. and Mei, F. X., “Form Invariance and Lie Symmetry of Equations of Non-Holonomic Systems,” Chinese Physics B, 11, pp. 5–8 (2002).

39.Zhang, H. B. and Chen, L. Q., “The Unified Form of Hojman’s Conservation Law and Lutzky’s Conservation Law,” Journal of the Physical Society of Japan, 74, p. 905 (2005).

40.Santilli, R. M., Foundations of Theoretical Mechanics I, Springer, NewYork, p. 72 (1978).