Skip to main content Accessibility help

Impulsive Control of a Cam-Follower Oblique-Impact System

  • N. Lu (a1), X. M. Ren (a1), T. D. Jiang (a1) (a2) and Y. F. Yang (a1)


The transient impact hypothesis was extended, and the oblique collision model was established by considering the tangential slip. In order to solve this problem, the oblique-impact equations for cam-follower were transformed into a linear complementarity problem. Impulsive control method was employed to control or anti-control the nonlinear responses. The simulation results show that the cam-follower system performs very complex nonlinear characteristics, such as period, quasi-period and chaos responses. Using the impulsive control method, the nonlinear responses of the cam-follower system can be controlled to P(n, n) and P(∞, n) or anti-controlled to chaos.


Corresponding author

*Corresponding author (


Hide All
1. Flores, P., Leine, R. and Glocker, C., “Modeling and Analysis of Planar Rigid Multibody Systems with Translational Clearance Joints Based on the Non-Smooth Dynamics Approach,” Multibody System Dynamics, 23, pp. 165190 (2010).
2. Zhao, X. R., Xu, W., Yang, Y. G. and Wang, X. Y., “Stochastic Responses of a Viscoelastic-Impact System under Additive and Multiplicative Random Excitations,” Communications in Nonlinear Science and Numerical Simulation, 35, pp. 166176 (2016).
3. Mankame, N. D. and Ananthasuresh, G. K., “Synthesis of Contact-Aided Compliant Mechanisms for Non-Smooth Path Generation,” International Journal for Numerical Methods in Engineering, 69, pp. 25642605 (2007).
4. Lima, R. and Sampaio, R., “Stick-Mode Duration of a Dry-Friction Oscillator with an Uncertain Model,” Journal of Sound and Vibration, 353, pp. 259271 (2015).
5. Osorio, G., di Bernardo, M. and Santini, S., “Cornerimpact Bifurcations: A Novel Class of Discontinuity-Induced Bifurcations in Cam-Follower Systems,” SIAM Journal on Applied Dynamical Systems, 8, pp. 1838 (2008).
6. Alzate, R., di Bernardo, M. and Montanaro, U., “Experimental and Numerical Verification of Bifurcations and Chaos in Cam-Follower Impacting System,” Nonlinear Dynamics, 50, pp. 409429 (2007).
7. Shen, Y. and Stronge, W. J., “Painleve Paradox during Oblique Impact with Friction,” European Journal of Mechanics A/Solids, 30, pp. 457467 (2011).
8. Yan, H. S., Tsai, M. and Hsu, M. H., “An Experimental Study of the Effect of the Cam Speed on Cam-Follower Systems,” Mechanism and Machine Theory, 31, pp. 397412 (1996).
9. Zang, W. and Ye, M., “Local and Global Bifurcations of Valve Mechanism,” Nonlinear Dynamics, 6, pp. 301316 (1996).
10. Alzate, R., Piiroinen, P. T. and di Bernardo, M., “From Complete to Incomplete Chattering: A Novel Route to Chaos in Impacting Cam-Follower Systems,” International Journal of Bifurcation and Chaos, 22, Article ID 1250102 (2012).
11. Alzate, R., di Bernardo, M., Giordano, G., Rea, G. and Santini, S., “Experimental and Numerical Investigation of Coexistence, Novel Bifurcations and Chaos in a Cam-Follower System,” SIAM Journal on Applied Dynamical Systems, 8, pp. 592623 (2009).
12. Sundar, S., Dreyer, J. T. and Singh, R., “Rotational Sliding Contact Dynamics in a Non-Linear Cam-Follower System as Excited by a Periodic Motion,” Journal of Sound and Vibration, 332, pp. 42804295 (2013).
13. Ding, H., Chen, L. Q. and Yang, S. P., “Convergence of Galerkin Truncation for Dynamic Response of Finite Beams on Nonlinear Foundations under a Moving Load,” Journal of Sound and Vibration, 331, pp. 24262442 (2012).
14. Ding, H. and Chen, L. Q., “Galerkin Methods for Natural Frequencies of High-Speed Axially Moving Beams,” Journal of Sound and Vibration, 329, pp. 34843494 (2010).
15. Zhang, T., Li, H. G., Zhong, Z. Y. and G. P., “Hysteresis Model and Adaptive Vibration Suppression for a Smart Beam with Time Delay,” Journal of Sound and Vibration, 358, pp. 3547 (2015).
16. Meingast, M. B., Legrand, M. and Pierre, C. A., “Linear Complementarity Problem Formulation for Periodic Solutions to Unilateral Contact Problems,” International Journal of Non-Linear Mechanics, 66, pp. 1827 (2014).
17. Leine, R. I. and Glocker, C., “A Set-Valued Force Law for Spatial Coulomb-Contensou Friction,” European Journal of Mechanics - A/Solids, 22, pp. 193216 (2003).
18. Flores, P., Leine, R. and Glocker, C., “Application of the Nonsmooth Dynamics Approach to Model and Analysis of the Contact-Impact Events in Cam-Follower Systems,” Nonlinear Dynamics, 69, pp. 21172133 (2012).
19. Glocker, C., “On Frictionless Impact Models in Rigid-Body Systems,” Philosophical Transactions of the Royal Society B Biological Sciences, 359, pp. 23852404 (2001).


Impulsive Control of a Cam-Follower Oblique-Impact System

  • N. Lu (a1), X. M. Ren (a1), T. D. Jiang (a1) (a2) and Y. F. Yang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed