1.Alcrudo, F. and Garcia-Navarro, P., “A High-Resolution Godunove-Type Scheme in Finite Volumes for the 2D Shallow Water Equations,” Int. J. Numer. Meth. Fluids, 16, pp. 489–505(1993).

2.Mingham, C. G. and Causon, D. M., “High-Resolution Finite-Volume Method for Shallow Water Flows,” J. Hydraulic Eng., 124(6), pp. 605–614 (1998).

3.Brufau, P. and Garcia-Navarro, P., “Two-Dimensional Dam Break Flow Simulation,” Int. J. Numer. Meth. Fluids, 33, pp. 35–57 (2000).

4.Erduran, K. S., Kutija, V. and Hewett, C. J. M., “Performance of Finite Volume Solutions to the Shallow Water Equations with Shock-Capturing Schemes,” Int. J. Numer. Meth. Fluids, 40, pp. 1237–1273 (2002).

5.Lin, G. F., Lai, J. S. and Guo, W. D., “Finite-Volume Component-Wise TVD Schemes for 2D Shallow Water Equations,” Adv. Water Resour., 26, pp. 861–873 (2003).

6.Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin (1997).

7.Toro, E. F., Shock-capturing Methods for Free-surface Shallow Water Flows, John Wiley & Sons, New York (2001).

8.Bermudez, A. and Vazquez, M. E., “Upwind Methods for Hyperbolic Conservation Laws with Source Terms,” Computers & Fluids, 23, pp. 1049–1071 (1994).

9.Nujic, M., “Efficient Implementation of Non- Oscillatory Schemes for the Computation of Free- Surface Flows,” J. Hydraulic Res., 33, pp. 101–111 (1995).

10.Leveque, R. J., “Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods: the Quasi-Steady Wave-Propagation Algorithm,” J. Comput. Phys., 146, pp. 346–365 (1998).

11. Vazquez-Cendon, M. E., “Improved Treatment of Source Terms in Upwind Schemes for Shallow Water Equations in Channels with Irregular Geometry,” J. Comput. Phys., 148, p. 497 (1999).

12.Garcia-Navarro, P. and Vazquez-Cendon, M. E., “On Numerical Treatment of the Source Terms in the Shallow Water Equation,” Computers & Fluids, 29, pp. 951–979(2000).

13.Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingrams, D. M, “The Surface Gradient Method for the Treatment of Source Terms in the Shallow Water Equations,” J. Comput. Phys., 168, pp. 1–25 (2001).

14.Burguete, J. and Garcia-Navarro, P., “Efficient Construction of High-Resolution TVD Conservative Schemes for Equations with Source Terms: Application to Shallow Water Flows,” Int. J. Numer. Meth. Fluids, 37, pp. 209–248(2001).

15.Brufau, P., Vazquez-Cendon, M. E. and Garcia-Navarro, P., “ANumerical Model for the Flooding and Drying of Irregular Domains,” Int. J. Numer. Meth. Fluids, 39, pp. 247–275 (2002).

16.Goutal, N. and Maurel, F., “A Finite Volume Solver for 1D Shallow-Water Equations Applied to an Actual River,” Int. J. Numer. Meth. Fluids, 39, pp. 1–19 (2002).

17.Zhou, J. G., Causon, D. M., Ingrams, D. M. and Mingham, C. G., “Numerical Solutions of the Shallow Water Equations with Discontinuous Bed Topography,” Int. J. Numer. Meth. Fluids, 38, pp. 769–788 (2002).

18.Tseng, M. H., “The Improved Surface Gradient Method for Flows Simulation in Variable Bed Topography Channel Using TVD-Maccormack Scheme,” Int. J. Numer. Meth. Fluids, 43, pp. 71–91 (2003).

19.Rogers, B. D., Borthwick, A. G. L. and Taylor, P. H., “Mathematical Balancing of Flux Gradient and Source Terms Prior to Using Roe S Approximate Riemann Solver,” J. Comput. Phys., 192, pp. 422–451 (2003).

20.Rebollo, T. C., Delgado, A. D. and Nieto, E. D. F., “A Family of Stable Numerical Solvers for the Shallow Water Equations with Source Terms,” Comput. Methods Appl. Mech. Engrg., 192, pp. 203–225 (2003).

21.Brufau, P. and Garcia-Navarro, P., “Unsteady Free Surface Flow Simulation Over Complex Topography with a Multidimensional Upwind Technique,” J. Comput. Phys., 186, pp. 503–526 (2003).

22.Nelida, C. Z., Senka, V. and Luka, S., “Balanced Finite Volume WENO and Central WENO Schemes for the Shallow Water and the Open-Channel Flow Equations,” J. Comput. Phys., 200, pp. 512–548 (2004).

23.Lai, J. S., Lin, G. F. and Guo, W. D., “Simulation of Hydraulic Shock Waves by Hybrid Flux-Splitting Schemes in Finite Volume Method,” Journal of Mechanics, 21, pp. 85–101 (2005).

24.Tan, W. Y., Shallow Water Hydrodynamics, Elsevier, New York (1992).

25.Hirsch, C., Numerical Computation of Internal and External Flows, John Wiley & Sons, New York (1990).

26.Liou, M. S. and Steffen, C. J., “A New Flux Splitting Scheme,” J. Comput. Phys., 107, pp. 23–39 (1993).

27.Liou, M. S., “A Sequel to AUSM: AUSM+,” J. Comput. Phys., 129, pp. 364–382 (1996).

28.Wada, Y. and Liou, M. S., “An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities,” SIAMJournal of Scientific Computing, 18, pp. 633–657 (1997).

29.Hu, K., Mingham, C. G. and Causon, D. M., “A Bore- Capturing Finite Volume Method for Open-Channel Flows,” Int. J. Numer. Meth. Fluids, 28, pp. 1241–1261 (1998).

30.Valiani, A., Caleffi, V. and Zanni, A., “Case Study: Malpasset Dam-Break Simulation Using a Two- Dimensional Finite Volume Method,” J. Hydraulic Eng., 128, pp. 460–472 (2002).

31.Zhao, D. H., Shen, H. W., Tabios, G. Q., Lai, J. S. and Tan, W. Y., “Finite-Volume Two-Dimensional Unsteady-Flow Model for River Basins,” J. Hydraulic Eng., 120, pp. 863–883 (1994).

32.Alcrudo, F. and Benkhaldoun, F., “Exact Solutions to the Riemann Problem of the Shallow Water Equations with a Bottom Step,” Computers & Fluids 30 643–671 (2001).

33.LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge, UK (2002).

34.Zhou, G. J. and Stansby, P. K., “2D Shallow Water Flow Model for the Hydraulic Jump,” Int. J. Numer. Meth. Fluids, 29, pp. 375–387 (1999).

35.Aureli, F., Mignosa, P. and Tomirotti, M., “Numerical Simulation and Experimental Verification of Dam- Break Flows with Shocks,” J. Hydraulic Res., 38, pp. 197–206 (2000).

36.Zhou, J. G., Causon, D. M., Mingham, C. G. and Ingrams, D. M., “Numerical Prediction of Dam-Break Flows in General Geometries with Complex Bed Topography,” J. Hydraulic Eng., 130, pp. 332–340 (2004).

37.Rebollo, T. C., Nieto, E. D. F. and Marmol, M. G., “A Flux-Splitting Solver for Shallow Water Equations with Source Terms,” Int. J. Numer. Meth. Fluids, 42, pp. 23–55 (2003).

38.Macchione, F. and Morelli, M. A., “Practical Aspects in Comparing Shock-Capturing Schemes for Dam Break Problems,” J. Hydraulic Eng., 129, pp. 187–195 (2003).

39.Lai, J. S., “Feasibility Study on the Raise Elevation of the Zhongshan Bridge in the Keelung River—Based on Hydraulic Data Obtained from the Physical Modeling,” Research Report No. 441, Hydrotech Research Institute, National Taiwan University (2002) (in Chinese).

40.Environmental Modeling Research Laboratory, “SMS 8.0 Tutorials,” Brigham Young University, Copyright (2002).