Skip to main content Accessibility help
×
Home

Heat Transfer Analysis for Peristalsis of MHD Carreau Fluid in a Curved Channel Through Modified Darcy Law

  • A. Tanveer (a1) (a2), T. Hayat (a1) (a3), A. Alsaedi (a3) and B. Ahmad (a3)

Abstract

The present analysis has been developed to investigate the heat transfer phenomenon in peristaltic flow of Carreau fluid in a curved channel with rhythmic contraction and expansion of waves along the walls (similar to blood flow in tubes). Magnetic field is imposed in radial direction. The heat transfer aspect is further studied with viscous dissipation effect. The curved channel walls are influenced by flow and thermal partial slip. In addition the flow stream comprised porous medium. The system of relevant non-linear PDEs have been reduced to ODEs by utilizing the long wavelength approximation. The striking features of flow and temperature characteristics under the involved parameters are examined by plotting graphs. The generation of fluid temperature and velocity due to viscous dissipation and gravitational efforts are recorded respectively. Moreover indicated results signify activation of velocity, temperature and heat transfer rate with Darcy number.

Copyright

Corresponding author

* Corresponding author (anum@math.qau.edu.pk)

References

Hide All
1.Shapiro, A. H., Jaffrin, M. Y. and Weinberg, S. L., “Peristaltic Pumping with Long Wavelengths at Low Reynolds number,” Journal of Fluid Mechanics, 37, pp. 799825 (1969).
2.Tripathi, D., Bhushan, S. and Bég, O. A., “Unsteady Viscous Flow Driven by the Combined Effects of Peristalsis and Electro-Osmosis,” Alexandria Engineering Journal, DOI: 10.1016/j.aej.2017.05.027 (2017).
3.Ellahi, R., Bhatti, M. M. and Vafai, K., “Effects of Heat and Mass Transfer on Peristaltic Flow in a Non-Uniform Rectangular Duct,” International Journal of Heat and Mass Transfer, 71, pp. 706719 (2014).
4.Ayub, S., Hayat, T., Asghar, S. and Ahmad, B., “Thermal Radiation Impact in Mixed Convective Peristaltic Flow of Third Grade Nanofluid,” Results in Physics, 7, pp. 36873695 (2017).
5.Hayat, T., Zahir, H., Tanveer, A. and Alsaedi, A., “Influences of Hall Current and Chemical Reaction in Mixed Convective Peristaltic Flow of Prandtl Fluid,” Journal of Magnetism and Magnetic Materials, 407, pp. 321327 (2016).
6.Hayat, T., Ayub, S., Alsaedi, A., Tanveer, A. and Ahmad, B., “Numerical Simulation for Peristaltic Activity of Sutterby Fluid with Modified Darcy’s Law,” Results in Physics, 7, pp. 762768 (2017).
7.Bhatti, M. M., Zeeshan, A. and Ijaz, N., “Slip Effects and Endoscopy Analysis on Blood Flow of Particle-Fluid Suspension Induced by Peristaltic Wave,” Journal of Molecular Liquids, 218, pp. 240245 (2016).
8.Hayat, T., Iqbal, R., Tanveer, A. and Alsaedi, A., “Influence of Convective Conditions in Radiative Peristaltic Flow of Pseudoplastic Nanofluid in a Tapered Asymmetric Channel,” Journal of Magnetism and Magnetic Materials, 408, pp. 168176 (2016).
9.Bhatti, M. M., Zeeshan, A. and Ellahi, R., “Simultaneous Effects of Coagulation and Variable Magnetic Field on Peristaltically Induced Motion of Jeffrey Nanofluid Containing Gyrotactic Microorganism,” Microvascular Research, 110, pp. 3242 (2017).
10.Bhatti, M. M., Zeeshan, A., Ellahi, R. and Ijaz, N., “Heat and Mass Transfer of Two-Phase Flow with Electric Double Layer Effects Induced Due to Peristaltic Propulsion in the Presence of Transverse Magnetic Field,” Journal of Molecular Liquids, 230, pp. 237246 (2017).
11.Hayat, T., Iqbal, R., Tanveer, A. and Alsaedi, A., “Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid with Chemical Reaction,” Journal of Molecular Liquids, 220, pp. 693706 (2016).
12.Ellahi, R., Tariq, M. H., Hassan, M. and Vafai, K., “On Boundary Layer Magnetic Flow of Nano-Ferroliquid under the Influence of Low Oscillating over Stretchable Rotating Disk,” Journal of Molecular Liquids, 229, pp. 339345 (2017).
13.Hassan, M., Zeeshan, A., Majeed, A. and Ellahi, R., “Particle Shape Effects on Ferrofuids Flow and Heat Transfer under Influence of Low Oscillating Magnetic Field,” Journal of Magnetism and Magnetic Materials, 443, pp. 3644 (2017).
14.Ellahi, R., Bhatti, M. M. and Khalique, C. M., “Three-Dimensional Flow Analysis of Carreau Fluid Model Induced by Peristaltic Wave in the Presence of Magnetic Field,” Journal of Molecular Liquids, 241, pp. 10591068 (2017).
15.Hayat, T., Nisar, Z., Yasmin, H. and Alsaedi, A., “Peristaltic Transport of Nanofluid in a Compliant Wall Channel with Convective Conditions and Thermal Radiation,” Journal of Molecular Liquids, 220, pp. 448453 (2016).
16.Tanveer, A., Hayat, T., Alsaadi, F. and Alsaedi, A., “Mixed Convection Peristaltic Flow of Eyring-Powell Nanofluid in a Curved Channel with Compliant Walls,” Computers in Biology and Medicine, 82, pp. 7179 (2017).
17.Hayat, T., Zahir, H., Mustafa, M. and Alsaedi, A., “Peristaltic Flow of Sutterby Fluid in a Vertical Channel with Radiative Heat Transfer and Compliant Walls: A Numerical Study,” Results in Physics, 6, pp. 805810 (2016).
18.Hayat, T., Tanveer, A. and Alsaedi, A., “Mixed Convective Peristaltic Flow of Carreau--Yasuda Fluid with Thermal Deposition and Chemical Reaction,” International Journal of Heat and Mass Transfer, 96, pp. 474481 (2016).
19.Hayat, T., Saleem, S., Tanveer, A. and Alsaadi, F., “Numerical Analysis for Peristalsis of Williamson Nanofluid in Presence of an Endoscope,” International Journal of Heat and Mass Transfer, 114, pp. 395401 (2017).
20.Hayat, T., Aslam, N., Alsaedi, A. and Rafiq, M., “Numerical Analysis for Endoscope and Soret and Dufour Effects on Peristalsis of Prandtl Fluid,” Results in Physics, 7, pp. 28552864 (2017).
21.Reddy, M. G., “Heat and Mass Transfer on Magnetohydrodynamic Peristaltic Flow in a Porous Medium with Partial Slip,” Alexandria Engineering Journal, 55, pp. 12251234 (2016).
22.Shit, G. C. and Ranjit, N. K., “Role of Slip Velocity on Peristaltic Transport of Couple Stress Fluid through an Asymmetric Non-Uniform Channel: Application to Digestive System,” Journal of Molecular Liquids, 221, pp. 305315 (2016).
23.Hayat, T., Shafique, M., Tanveer, A. and Alsaedi, A., “Hall and Ion Slip Effects on Peristaltic Flow of Jeffrey Nanofluid with Joule Heating,” Journal of Magnetism and Magnetic Materials, 407, pp. 5159 (2016).
24.Akbar, N. S., Nadeem, S. and Khan, Z. H., “Numerical Simulation of Peristaltic Flow of a Carreau Nanofluid in an Asymmetric Channel,” Alexandria Engineering Journal, 53, pp. 191197 (2014).
25.Hayat, T., Tanveer, A., Yasmin, H. and Alsaedi, A., “Homogeneous-Heterogeneous Reactions in Peristaltic Flow with Convective Conditions,” PLOS One, DOI: 10.1371/journal.pone.0113851 (2014).
26.Ramesh, K., “Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel through Porous Medium,” Computer Methods and Programs in Biomedicine, 135, pp. 114 (2016).
27.Shirvan, K. M., Mamourian, M., Mirzakhanlari, S., Ellahi, R. and Vafai, K., “Numerical Investigation and Sensitivity Analysis of Effective Parameters on Combined Heat Transfer Performance in a Porous Solar Cavity Receiver by Response Surface Methodology,” International Journal of Heat and Mass Transfer, 105, pp. 811825 (2017).
28.Ellahi, R., Raza, M. and Akbar, N. S., “Study of Peristaltic Flow of Nanofluid with Entropy Generation in a Porous Medium,” Journal of Porous Media, 20, pp. 461478 (2017).
29.Hayat, T., Tanveer, A. and Alsaedi, A., “Numerical Analysis of Partial Slip on Peristalsis of MHD Jeffery Nanofluid in Curved Channel with Porous Space,” Journal of Molecular Liquids, 224, pp. 944953 (2016).
30.Tanveer, A., Hayat, T., Alsaedi, A. and Ahmad, B., “On Modified Darcy’s Law Utilization in Peristalsis of Sisko Fluid,” Journal of Molecular Liquids, 236, pp. 290297 (2017).

Keywords

Heat Transfer Analysis for Peristalsis of MHD Carreau Fluid in a Curved Channel Through Modified Darcy Law

  • A. Tanveer (a1) (a2), T. Hayat (a1) (a3), A. Alsaedi (a3) and B. Ahmad (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed