Skip to main content Accessibility help
×
Home

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets

  • D.-A. Wang (a1), W. Y. Chien (a1), K. C. Liao (a2), J. Pan (a1) and S. C. Tang (a1)...

Abstract

An approximate anisotropic yield function is presented for anisotropic sheet metals containing spherical voids. Hill's quadratic anisotropic yield function is used to describe the anisotropy of the matrix. The proposed yield function is validated using a three-dimensional finite element analysis of a unit cell model under different straining paths. The results of the finite element computations are shown in good agreement with those based on the yield function with three fitting parameters. For demonstration of applicability, the anisotropic Gurson yield function is adopted in a combined necking and shear localization analysis to model the failure of AA6111 aluminum sheets under biaxial stretching conditions.

Copyright

Corresponding author

*Graduate student
**Assistant Professor
***Professor
****Visiting Scholar

References

Hide All
1Worswick, M. J., Pilkey, A. K., Lloyd, D. and Court, S., “Damage Characterization and Damage Percolation Modelling in Aluminum Alloy Sheet,” SAE Paper 2000-01-0773, Society of Automotive Engineers, Warrendale, PA (2000).
2Gurson, A. L., “Continuum Theory of Ductile Rupture by Void Growth: Part I – Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Tech., 99, pp. 215 (1977).
3Yamamoto, H., “Conditions for Shear Localization in the Ductile Fracture of Void Containing Materials,” Int. J. Fract., 11, pp. 347365 (1978).
4Needleman, A. and Triantafyllidis, N., “Void Growth and Local Necking in Biaxial Stretched Sheets,” J. Eng. Mater. Tech., 100, pp. 164169 (1978).
5Saje, M., Pan, J. and Needleman, A., “Void Nucleation Effects on Shear Localization in Porous Plastic Solids,” Int. J. Fract., 19, pp. 163182 (1982).
6Tvergaard, V., “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions,” Int. J. Fract., 17, pp. 389407 (1981).
7Mear, M. E. and Hutchinson, J. W., “Influence of Yield Surface Curvature on Flow Localization in Dilatant Plasticity,” Mech. Mater., 4, pp. 395407 (1985).
8Tvergaard, V., “On Localization in Ductile Materials Containing Spherical Voids,” Int. J. Fract., 18, pp. 237252 (1982).
9Pan, J., Saje, M. and Needleman, A., “Localization of Deformation in Rate Sensitive Porous Plastic Solids,” Int. J. Fract., 21, pp. 261278 (1983).
10Tvergaard, V. and Needleman, A., “Analysis of the Cup-Cone Fracture in a Round Tensile Bar,” Acta Metal., 32, pp. 157169 (1984).
11Graf, A. and Hosford, W. F., “Calculations of Forming Limit Diagrams,” Metall. Trans., 21A, pp. 8794 (1990).
12Hill, R., “A Theory of the Yielding and Plastic Flow of Anisotropic Metals,” Roy. Soc. London Proc., 193A, pp. 281297 (1948).
13Hosford, W. F., “On Yield Loci of Anisotropic Cubic Metals,” Proc. 7th North Am. Metalworking Res. Conf., SME, Dearborn, MI, pp. 191196 (1979).
14Liao, K.-C., Pan, J. and Tang, S. C., “Approximate Yield Criteria for Anisotropic Porous Ductile Sheet Metals,” Mech. Mater., 26, pp. 213226 (1997).
15Hill, R., “Theoretical Plasticity of Textured Aggregates,” Math. Proc. Camb. Phil. Soc., 85, pp. 179191 (1979).
16Chien, W. Y., Pan, J. and Tang, S. C., “Modified Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals,” J. Eng. Mater. Tech., 123, pp. 409416 (2001).
17Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., Lege, D. J., Matsui, K., Murtha, S. J., Hattori, S., Becker, R. C. and Makosey, S., “Yield Function Development for Aluminum Alloy Sheets,” J. Mech. Phys. Solids, 45, pp. 17271763 (1997).
18Yoon, J. W., Barlat, F. and Dick, R. E., “Sheet Metal Forming Simulation for Aluminum Alloy Sheets,” SAE Paper 2000-01-0774, Society of Automotive Engineers, Warrendale, PA (2000).
19Liao, K.-C, Friedman, P. A., Pan, J. and Tang, S. C., “Texture Development and Plastic Anisotropy of B.C.C. Strain Hardening Sheet Metals,” Int. J. Solids Struct., 35, pp. 52055236 (1998).
20Wang, D.-A., Pan, J. and Liu, S.-D., “An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals with Planar Anisotropy,” submitted for publication in Int. J. Damage Mech. (2002).
21Hibbitt, H. D., Karlsson, B. I. and Sorensen, E. P., ABAQUS User Manual, Version 6-2 (2001).
22Chien, W. Y., Pan, J. and Tang, S. C., “A Combined Necking and Shear Localization Analysis of Aluminum Sheet Failure Under Biaxial Stretching Conditions,” to be submitted for publication (2002).
23Hill, R., “Acceleration Waves in Solids,” J. Mech. Phys. Solids, 10, pp. 116 (1962).
24Rice, J. R., “The Localization of Plastic Deformation,” Proc. 14th Int. Cong. Theor. Appl. Mech., ed. Koiter, W. T., Delft, North-Holland, 1, pp. 207220 (1976).
25Jain, M., Allin, J. and Lloyd, D. J., “Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet,” Int. J. Mech. Sci., 41, pp. 12731288 (1999).

Keywords

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets

  • D.-A. Wang (a1), W. Y. Chien (a1), K. C. Liao (a2), J. Pan (a1) and S. C. Tang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed