Skip to main content Accessibility help

Failure Probabilities of Reinforced Concrete Square Pile Caps

  • W.-Y. Lu (a1)


An analytical model for determining the shear strength of concrete pile caps under the failure mode of diagonal-compression originally based on the softened strut-and-tie model is proposed. The failure probabilities of reinforced concrete pile caps are investigated by Monte Carlo method. The results indicate that the proposed model can accurately predict the shear strength of the pile caps. The distribution of the failure probabilities for pile caps designed to ACI 318-02 Appendix A and the proposed design method are more uniform than that designed to the ACI 318-99. The ACI 318-99 is very conservative and cannot provide a consistent safety for pile caps design. It is suggested that the procedures in the ACI 318-02 Appendix A should be moved to the main body of ACI 318-02 and the proposed design method should be incorporated into the current reinforced concrete pile cap design methods.


Corresponding author



Hide All
1. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318–99) and Commentary (ACI 318R-99),”American Concrete Institute, Farmington Hills, MI, 391pp. (1999).
2.Adebar, P. and Zhou, Z., “Design of Deep Pile Caps by Strut-and-Tie Models,” ACI StructuralJournal, 93(4), pp. 437448 (1996).
3. ACI Committee 318, “Building Code Requirements for Structural Concrete (ACI 318–02) and Commentary (ACI 318R-02),”American Concrete Institute, Farmington Hills, MI, 444 pp. (2002).
4.Hwang, S. J. and Lee, H. J., “Strength Prediction for Discontinuity Regions Failing in Diagonal Compressions by Softened Strut-and-tie Model,” Journal of Structural Engineering, ASCE, 128(12), pp. 15191526(2002).
5.Hwang, S. J., Lu, W. Y. and Lee, H. J., “Shear Strength Prediction for Deep Beams,” ACI Structural Journal, 97(3), pp. 367376 (2000).
6.Clarke, J. L., “Behavior and Design of Pile Caps with Four Piles,” Cement and Concrete Association, London, Report 42.489,19 pp. (1973).
7.Sabins, G. M. and Gogate, A. B., “Investigation of Thick Slab (Pile Cap) Behavior,” ACI Journal, 81(1), pp. 3539 (1984).
8.Ohtsuki, K. and Suzuki, K., “Experimental Study on Bending Ultimate Strength of Four Pile Caps,” Journal of Structural and Construction Engineering, AIJ, 482, pp. 93102 (1996) (in Japanese).
9.Lu, W. Y., “Failure Probabilities of Reinforced Concrete Column Footings,” Journal of the Chinese Institute of Engineers, 29(4), pp. 733739 (2006).
10.Nowak, A. S. and Szerszen, M. M., “Calibration of Design Code for Buildings (ACI 318): Part 1- Statistical Models for Resistance,” ACI Structural Journal, 100(3), pp. 377382 (2003).
11.Diniz, S. M. C. and Frangopol, D. M., “Reliability Bases for High-Strength Concrete Columns,” Journal of Structural Engineering, ASCE, 123(10), pp. 13751381 (1997).
12.Ellingwood, B., Galambos, T. V., MacGregor, J. G. and Cornell, C. A., “Development of Probabilities Based Load Criterion for American National Standard A58,” NBS Special Publication, National Bureau of Standards, Washington, D. C., 577, 222 pp. (1980).
13.Darwin, D., Idun, E. K., Zuo, J. and Tholen, M. L., “Reliability-based Strength Reduction Factor for Bond,” ACI Structural Journal, 95(4), pp. 434443 (1998).
14.Lu, W. Y., “A Study on the Safety of the Shear Capacity Design of Reinforced Concrete Beam-Column Joints,” Journal of Mechanics, 22, pp. 271280 (2006).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed