Skip to main content Accessibility help
×
Home

Explicit Solutions For the Magnetoelastic Fields with a Rigid Line Inclusion

  • Chun-Bo Lin (a1) and Hsien-Mou Lin (a1)

Abstract

A general solution to the magnetoelastic problem with a rigid line inclusion is presented. Based upon the complex variable theory, the proposed analysis dealing with sectionally holomorphic functions can be reduced to find the solution of the Hilbert problem. It is indicated that the magnetoelastic stress fields near the inclusion tip possess a square root singularity just like that of the corresponding crack problem. The stress singularity coefficients which are defined in this study to characterize the near tip fields are similar to the stress intensity factors for crack problem. Numerical results of the stress distribution in the vicinity of inclusion tip are also displayed in graphic form to elucidate the effect of various parameters.

Copyright

Corresponding author

*Associate Professor
**Instructor

References

Hide All
1Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Gronongen (1953).
2Chou, Y. T. and Wang, Z. Y., “Stress Singularity at the Tip of a Rigid Flat Inclusion,” Recent Developments in Applied Mathematics, Ling, F.F., and Tadjbaklish, I.G., eds., Rensselaer Press, pp. 2130 (1983).
3Wang, Z. Y., Zhang, H. T. and Chou, Y. T., “Characteristics of the Elastic Field of a Rigid Line Inhomogeneity,” Journal of Applied Mechanics ASME, Vol. 52, pp. 818822 (1985).
4Yeh, C. S., “Magnetic Fields Generated by a Mechanical Singularity in a Magnetized Elastic Half Plane,” Journal of Applied Mechanics ASME, 56, pp. 8995 (1989).
5Moon, F. C., Magneto-solid Mechanics, John Wiley & Sons. Inc., New York (1984).
6Brown, W. F. Jr.Magnetoelastic Interactions, Springer-Verlag, New York (1966).
7Pao, Y. H. and Yeh, C. S., “A linear Theory for Soft Ferromagnetic Elastic Solids,” Internal Journal of Engineering Science, 11, pp. 415436 (1973).
8Shindo, Y., “The Linear Magnetoelastic Problem for a Soft Ferromagnetic Elastic Solid with a Finite Crack,” Journal of Applied Mechanics ASME, 44, pp. 4751 (1977).
9Shindo, Y., “Magnetoelastic Interaction of a Soft Ferromagnetic Elastic Solid with a Penny-Shaped Crack in a Constant Axial Magnetic Field,” Journal of Applied Mechanics ASME, 45, pp. 291296 (1978).
10Shindo, Y., “Singular Stresses in a Soft Ferromagnetic Elastic Solid with Two Coplanar Griffith Cracks,” Internal Journal of Solids and Structures, 16, pp. 537543 (1980).
11Lin, C. B. and Yeh, C. S., “The Magnetoelastic Problem of a Crack in a Soft Ferromagnetic Solid,” Internal Journal of Solids and Structure, 39, pp. 117 (2002).
12Lin, C. B. and Lin, H. M., “The magnetoelastic problem of cracks in bonded dissimilar materials,” Internal Journal of Solids and Structures, 39, pp. 28072826 (2002).
13England, A. H., Complex Variable Methods in Elasticity, Wiley Interscience, New York (1971).

Keywords

Explicit Solutions For the Magnetoelastic Fields with a Rigid Line Inclusion

  • Chun-Bo Lin (a1) and Hsien-Mou Lin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed