Skip to main content Accessibility help

Experimental Study of Flow Separation over NACA633018 Wing with Synthetic Jet Control at Low Reynolds Numbers

  • C.-Y. Lin (a1) and F.-B. Hsiao (a1)


This paper experimentally studies flow separation and aerodynamic performance of a NACA633018 wing using a series of piezoelectric-driven disks, which are located at 12% chord length from the leading edge to generate a spanwise-distributed synthetic jets to excite the passing flow. The experiment is conducted in an open-type wind tunnel with Reynolds numbers (Re) of 8 × 104 and 1.2 × 105, respectively, based on the wing chord. The oscillations of the synthetic jet actuators (SJAs) disturb the neighboring passage flow on the upper surface of the wing before the laminar separation takes place. The disturbances of energy influence the downstream development of boundary layers to eliminate or reduce the separation bubble on the upper surface of the wing. Significant lift increase and drag decrease are found at the tested Reynolds number of 8 × 104 due to the actuators excitation. Furthermore, the effect of drag also reduces dominant with increasing Reynolds number, but the increase on lift is reduced with the Reynolds number increased.


Corresponding author

*Corresponding author (


Hide All
1. Seifert, A., Darabi, A. and Wygnanski, I., “Delay of Airfoil Stall by Periodic Excitation,” Journal of Aircraft, 33, pp. 691698 (1996).
2. Neuberger, D. and Wygnanski, I., “The Use of a Vibrating Ribbon to Delay Separation on Two Dimensional Airfoils,” Proceedings of Air Force Academy Workshop on Unsteady Separated Flow, Rept. TR-88-000 (1987).
3. Hsiao, F. B., Liu, C. F. and Shyu, J-Y., “Control of Wall-Separated Flow by Internal Acoustic Excitation,” AIAA Journal, 28, pp. 14401446 (1990).
4. Pierce, A. D., Acoustics, 1st Edition, McGraw-Hill, New York, pp. 330333 (1981).
5. Chanaud, R. C., “Effects of Geometry on the Resonance Frequency of Helmholtz Resonators,” Journal of Sound and Vibration, 178, pp. 337348 (1994).
6. Dickey, N. S. and Selamet, A., “Helmholtz Resonators: One-dimensional Limit for Small Cavity Length-to-diameter Ratios,” Journal of Sound and Vibration, 195, pp. 512517 (1996).
7. Tang, S. K., “On Helmholtz Resonators with Tapered Necks,” Journal of Sound and Vibration, 279, pp. 10851096 (2005).
8. Chaudhari, M., Verma, G. and Puranik, B., “Frequency Response of a Synthetic Jet Cavity,” Experimental Thermal and Fluid Science, 33, pp. 439448 (2009)
9. Krishnan, G. and Mohseni, K., “An Experimental and Analytical Investigation of Rectangular Synthetic Jets,” Journal of Fluids Engineering, 131, pp. 121101-1–11 (2009).
10. Kim, S. H. and Kim, C. G., “Separation Control on NACA23012 Using Synthetic Jet,” Aerospace Science and Technology, 13, pp 172182 (2009).
11. Amir, M. and Kontis, K., “Application of Piezoelectric Actuators at Subsonic Speeds,” Journal of Aircraft, 45, pp. 14191430 (2008).
12. Farnsworth, J. A. N., Vaccaro, J. C. and Amitay, M., “Active Flow Control at Low Angles of Attack: Stingray Unmanned Aerial Vehicle,” AIAA Journal, 46, pp. 25302544 (2008)
13. Ciuryla, M., Liu, Y., Famsworth, J., Kwan, C. and Amitay, M., “Flight Control Using Synthetic Jets on a Cessna 182 Model,” Journal of Aircraft, 44, pp. 643653 (2007).
14. Chiders, D. G., Probability and Random Process, McGraw-Hill, New York, pp. 290291 (1997).
15. Watson, M., Jaworski, A. J. and Wood, N. J., “Contribution to the Understanding of Flow Interactions Between Multiple Synthetic Jets,” AIAA Journal, 41, pp. 747749 (2008).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed