Skip to main content Accessibility help

Elastic Constants of Composite Materials by an Inverse Determination Method Based on A Hybrid Genetic Algorithm

  • S.-F. Hwang (a1), J.-C. Wu (a1), Evgeny Barkanovs (a2) and Rimantas Belevicius (a3)


A numerical method combining finite element analysis and a hybrid genetic algorithm is proposed to inversely determine the elastic constants from the vibration testing data. As verified from composite material specimens, the repeatability and accuracy of the proposed inverse determination method are confirmed, and it also proves that the concept of effective elastic constants is workable. Moreover, three different sets of assumptions to reduce the five independent elastic constants to four do not make clear difference on the obtained results by the proposed method. In addition, to obtain robust values of the five elastic constants for a transversely isotropic material, it is recommended to use the out-of-plane Poisson's ratio instead of the out-of-plane shear modulus as the fifth one.


Corresponding author

*Professor, corresponding author
**Graduate student


Hide All
1.Carlsson, L. A. and Pipes, R. B., Experimental Characterization of Advanced Composite Materials, Prentice-Hall, New York (1987).
2.Deobald, L. R. and Gibson, R. F., “Determination of Elastic Constants of Orthotropic Plates by a Modal Analysis/Rayleigh-Ritz Technique,” Journal of Sound and Vibration, 124, pp. 269283 (1988).
3.Ayorinde, E. O. and Gibson, R. F., “Elastic Constants of Orthotropic Composite Materials Using Plate Resonance Frequencies, Classical Lamination Theory and an Optimized Three-mode Rayleigh Formulation,” Composite Engineering, 3, pp. 395407 (1993).
4.Mclntyre, M. E. and Woodhouse, J., “On Measuring the Elastic and Damping Constants of Orthotropic Sheet Materials,” Acta Metallurgica, 36, pp. 13971416 (1988).
5.De Visscher, J., Sol, H., De Wilde, W. P. and Vantomme, J., “Identification of the Damping Properties of Orthotropic Composite Materials Using a Mixed Numerical Experimental Method,” Applied Composite Materials, 4,pp. 1333(1997).
6.Frederiksen, P. S., “Single-layer Plate Theories Applied to the Flexural Vibration of Completely Free Thick Laminates,” Journal of Sound and Vibration, 186, pp. 743759(1999).
7.Ayorinde, E. O., “Elastic Constants of Thick Orthotropic Composite Plates,” Journal of Composite Materials, 29, pp. 10251039 (1995).
8.Frederiksen, P. S., “Experimental Procedure and Results for the Identification of Elastic Constants of Thick Orthotropic Plates,” Journal of Composite Materials, 31, pp. 360382 (1997).
9.Daghia, F., De Miranda, S., Ubertini, F. and Viola, E., “Estimation of Elastic Constants of Thick Laminated Plates within a Bayesian Framework,” Composite Structures, 80, pp. 461473 (2007).
10.Hwang, S. F. and Chang, C. S., “Determination of Elastic Constants of Materials by Vibration Testing,” Composite Structures, 49, pp. 183190 (2000).
11.Ma, C. C. and Lin, C. C., “Inverse Evaluation of Material Constants for Composite Plates by Optical Interferometry Method,” American Institute of Aeronautics and Astronautics Journal, 37, pp. 947953 (1999).
12.Rikards, R., Chate, A., Steinchen, W., Kessler, A. and Bledzki, A. K., “Method for Identification of Elastic Properties of Laminates Based on Experiment Design,” Composites Part B, 30, pp. 279289 (1999).
13.Barkanov, E., Chate, A., Ručevskis, S. and Skukis, E., “Characterisation of Composite Material Properties by an Inverse Technique,” Key Engineering Materials, 345–346, pp. 13191322(2007).
14.Cunha, J., Cogan, S. and Berthod, C., “Application of Genetic Algorithms for the Identification of Elastic Constants of Composite Materials from Dynamic Tests,” International Journal of Numerical Methods in Engineering, 45, pp. 891900 (1999).
15.Lee, C. R. and Kam, T. Y., “Identification of Mechanical Properties of Elastically Restrained Laminated Composite Plates Using Vibration Data,” Journal of Sound and Vibration, 295, pp. 9991016 (2006).
16.Caillet, J., Carmona, J. C. and Mazzoni, D., “Estimation of Plate Elastic Moduli through Vibration Testing,” Applied Acoustics, 68, pp. 334349 (2007).
17.Hwang, S. F. and He, R. S., “A Hybrid Real-parameter Genetic Algorithm for Function Optimization,” Advanced Engineering Informatics, 20, pp. 721 (2006).
18.Edwins, D. J., Modal Testing: Theory and Practice, Research Studies Press (1986).
19.Bledzki, A. K., Kessler, A., Rikards, R. and Chate, A., “Determination of Elastic Constants of Glass/Epoxy Unidirectional Laminates by the Vibration Testing of Plates,” Composites Science and Technology, 59, pp. 20152024(1999).
20.Whitcomb, J. and Tang, X., “Effective Moduli of Woven Composites,” Journal of Composite Materials, 35, pp.21272144 (2001).
21.Araujo, A. L., Mota Soares, C. M., Moreira de Freitas, M. J., Pedersen, P. and Herskovits, J., “Combined Numerical-experimental Model for the Identification of Mechanical Properties of Laminated Structures,” Composite Structures, 50, pp. 363372 (2000).
22.Araujo, A. L., “Metodo Numeric/Experimental para Carazterizacao Mecanica de Materiais Xompositos,” (in Portuguese), M.S. Theses, Technical University of Lisbon (1995).
23.Sol, H., “Identification of Anisotropic Plate Rigidities Using Free Vibration Data,” Ph.D. Thesis, Free University of Brussels (1986).
24.Frederiksen, P. S., “Identification of Material Parameters in Anisotropic Plates-a Combined Numericalexperimental Method,” Ph.D. Thesis, the Technical Univesity of Denmark (1992).


Elastic Constants of Composite Materials by an Inverse Determination Method Based on A Hybrid Genetic Algorithm

  • S.-F. Hwang (a1), J.-C. Wu (a1), Evgeny Barkanovs (a2) and Rimantas Belevicius (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed