Skip to main content Accessibility help
×
Home

Dynamic Responses of Two Beams Connected by a Spring-Mass Device

  • H.- P. Lin (a1) and D. Yang (a2)

Abstract

This paper deals with the transverse free vibrations of a system in which two beams are coupled with a spring-mass device. The dynamics of this system are coupled through the motion of the mass. The entire system is modeled as two two-span beams and each span of the continuous beams is assumed to obey the Euler-Bernoulli beam theory. Considering the compatibility requirements across each spring con-nection position, the eigensolutions (natural frequencies and mode shapes) of this system can be obtained for different boundary conditions. Some numerical results and experimental validations are presented to demonstrate the method proposed in this article.

Copyright

Corresponding author

*Corresponding author (linhp@mail.dyu.edu.tw)

References

Hide All
1. Gürgöze, M.On the Eigenfrequencies of a Cantilever Beams with Attached Tip Mass and a Spring-Mass System,” Journal of Sound and Vibration, 190, pp. 149162 (1996).
2. Rossi, R. E, Laura, P. A. and Larrondo, H., “Free Vibration of Timoshenko Beams Carrying Elastically Mounted, Concentrated Masses,” Journal of Sound and Vibration, 165, pp. 209223 (1993).
3. Nicholson, J. W. and Bergman, L. A., “Free Vibration of Combined Dynamical System,” Journal of Engineering Mechanics, 112, pp. 113 (1986).
4. Jen, M. U. and Magrab, E. B., “Natural Frequencies and Mode Shapes of Beams Carrying a Two-Degree-of-Freedom Spring-Mass System,” Journal of Vibration and Acoustics, 115, pp. 202209 (1993).
5. Wu, J. S. and Chou, H. M., “Free Vibration Analysis of a Cantilever Beam Carrying Any Number of Elastically Mounted Point Masses with the Analytical-and Numerical-Combined Method,” Journal of Sound and Vibration, 213, pp. 317332 (1998).
6. Gürgöze, M.On the Alternative Formulations of the Frequency Equation of a Bernoulli-Euler Beam to Which Several Spring-Mass Systems are Attached In-Span,” Journal of Sound and Vibration, 217, pp. 585595 (1998).
7. Wu, J. S. and Chou, H. M., “A New Approach for Determining the Natural Frequencies and Mode Shapes of a Uniform Beam Carrying Any Number of Sprung Masses,” Journal of Sound and Vibration, 220, pp. 451468 (1999).
8. Cha, P. D., “Natural Frequencies of a Linear Elastica Carrying Any Number of Sprung Masses,” Journal of Sound and Vibration, 247, pp. 185194 (2001).
9. Bambill, D. V. and Rossit, C. A., “Forced Vibrations of a Beam Elastically Restrained Against Rotation and Carrying a Spring-Mass System,” Ocean Engineering, 29, pp. 605626 (2002).
10. Kukla, S., Przybylski, J. and Tomski, L., “Longitudinal Vibrations of Rods Coupled by Translational Springs,” Journal of Sound and Vibration, 185, pp. 712722 (1995).
11. Gürgöze, M., “Alternative Formulations of the Frequency Equation of Longitudinally Vibrating Rods Coupled by a Double Spring-Mass System,” Journal of Sound and Vibration, 208, pp. 331338 (1997).
12. Mermertas, V. and Gürgöze, M., “Longitudinal Vibrations of Rods Coupled by a Double Spring-Mass System,” Journal of Sound and Vibration, 202, pp. 748755 (1997).
13. Inceoğlu, S. and Gürgöze, M., “Longitudinal Vibrations of Rods Coupled by Several Spring-Mass Systems,” Journal of Sound and Vibration, 234, pp. 895905 (2000).
14. Gürgöze, M., Erdogan, D. and Inceoğlu, S., “Bending Vibration of Beams Coupled by a Double Spring-Mass System,” Journal of Sound and Vibration, 243, pp. 361369 (2001).
15. Inceoğlu, S. and Gürgöze, M., “Bending Vibrations of Beams Coupled by Several Double Spring-Mass Systems,” Journal of Sound and Vibration, 243, pp. 370379 (2001).
16. Lin, H. P. and Chang, S. C., “Free Vibration Analysis of Multi-Span Beams with Intermediate Flexible Constraint,” Journal of Sound and Vibration, 281, pp. 155169 (2005).
17. Lin, H. P., “Dynamic Responses of Beams with a Flexible Support Under a Constant Speed Moving Load,” Journal of Mechanics, 24, pp. 195204 (2008).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed