Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 9.174 Render date: 2021-04-17T15:43:08.444Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Note on the Decomposition of Aerodynamic Forces Induced by A Wind Turbine Flaps

Published online by Cambridge University Press:  06 August 2020

Y. Y. Niu
Affiliation:
Department of Aerospace Engineering Tamkang UniversityNew Taipei City, Taiwan, R.O.C.
P. J. Shih
Affiliation:
Department of Aerospace Engineering Tamkang UniversityNew Taipei City, Taiwan, R.O.C.
S. C. Kong
Affiliation:
Department of Mechanical Engineering Iowa State University Ames, Iowa 50011, USA
Corresponding
E-mail address:
Get access

Abstract

In this study, the aerodynamic characteristics of a vertical-axis wind turbine blade coupled with a high-lift device, such as the Gurney flap at the trailing edge, are investigated. For numerical analysis, the force element theory is used to understand how the Gurney flap influences the force evolution of the lift-type vertical-axis wind turbine. This study shows that the lift and drag can be respectively approximated into four elements, which are induced by volume vorticity, rotational velocity, angular acceleration and surface friction of the flow around the blades. Based on the perspective of the force element theory, the present simulation provides a clear picture of how the Gurney flap influences the formation of the aerodynamic force elements during a rotational cycle for a vertical-axis wind turbine. Simulation results show that the contributions mainly result from the surface vorticities, the rotational acceleration of the airfoil, and the acceleration of the surface.

Type
Research Article
Copyright
Copyright © 2020 The Society of Theoretical and Applied Mechanics

Access options

Get access to the full version of this content by using one of the access options below.

References

Islam, M.R., Mekhilef, S., and Saidura, R., “Progress and recent trends of wind energy technology,” Renewable and Sustainable Energy Reviews, 21(1), pp. 456-468 (2013).CrossRefGoogle Scholar
Eriksson, S., Bernhoff, H., and Leijon, M., “Evaluation of different turbine concepts for wind power,” Renewable and Sustainable Energy Reviews, 12(5), pp. 1419-1434 (2008).CrossRefGoogle Scholar
Smith, A.M.O., “High-lift aerodynamics,” Journal of Aircraft, 12(6), pp. 501-530 (1975).CrossRefGoogle Scholar
Niu, Y.Y., “MUSCL Type Limiters for flux Spling Methods and Applications,” PhD Dissertation, The Ohio-State University (1995).CrossRefGoogle Scholar
Leibeck, R. H., “Design of Subsonic Airfoils for High Lift,” Journal of Aircraft, 15(9), pp. 547-561 (1978).CrossRefGoogle Scholar
Niu, Y. Y., Hsu, T. S., Hsieh, C. T., Chang, C. C., and Chu, C. C., “How Does a Gurney Flap Enhance the Aerodynamic Forces?AIAA Journal, 48(11), pp. 2710-2714 (2010).Google Scholar
Niu, Y.Y., and Edwards, J., “A Simple Incompressible Flux Splitting For Sharp Free Surface Capturing,” International Journal for Numerical Methods in Fluids, 69(10), pp. 1661-1678 (2012).CrossRefGoogle Scholar
Peskin, C. S., “Numerical analysis of blood flow in the heart,” Journal of Computational Physics., 25(3), pp. 220-252 (1977).Google Scholar
Chang, C.C., “Potential Flow and Forces for Incompressible Viscous Flow,” Proceedings of The Royal Society A, 437(1901), pp. 517-525 (1992).CrossRefGoogle Scholar
Niu, Y.-Y. and Chang, C. C., “How Do Aerodynamic Forces of the Pitching Rigid and Flexible Airfoils Evolve?AIAA Journal, 51(12), pp. 2946-2952 (2013).CrossRefGoogle Scholar
Chorin, A. J., “A numerical method for solving incompressible viscous flow problems,” J.Computational Physics, 135(1), pp. 12-26 (1967).Google Scholar
Yakhot, V., Orszag, S.A., “Renormalization-Group Analysis of Turbulence,” Physical Review Letters, 57(14), pp. 1722-1724 (1986).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 30 *
View data table for this chart

* Views captured on Cambridge Core between 06th August 2020 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Note on the Decomposition of Aerodynamic Forces Induced by A Wind Turbine Flaps
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Note on the Decomposition of Aerodynamic Forces Induced by A Wind Turbine Flaps
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Note on the Decomposition of Aerodynamic Forces Induced by A Wind Turbine Flaps
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *