Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.666 Render date: 2021-02-25T18:03:24.836Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets

Published online by Cambridge University Press:  05 May 2011

D.-A. Wang
Affiliation:
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
W. Y. Chien
Affiliation:
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
K. C. Liao
Affiliation:
Department of Mechanical Engineering, Mingchi Institute of Technology, Taipei Hsien, Taiwan 243, R.O C.
J. Pan
Affiliation:
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
S. C. Tang
Affiliation:
Department of Mechanical Engineering, The University of Michigan, Ann Arbor, MI 48109, U.S.A.
Get access

Abstract

An approximate anisotropic yield function is presented for anisotropic sheet metals containing spherical voids. Hill's quadratic anisotropic yield function is used to describe the anisotropy of the matrix. The proposed yield function is validated using a three-dimensional finite element analysis of a unit cell model under different straining paths. The results of the finite element computations are shown in good agreement with those based on the yield function with three fitting parameters. For demonstration of applicability, the anisotropic Gurson yield function is adopted in a combined necking and shear localization analysis to model the failure of AA6111 aluminum sheets under biaxial stretching conditions.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2003

Access options

Get access to the full version of this content by using one of the access options below.

References

1Worswick, M. J., Pilkey, A. K., Lloyd, D. and Court, S., “Damage Characterization and Damage Percolation Modelling in Aluminum Alloy Sheet,” SAE Paper 2000-01-0773, Society of Automotive Engineers, Warrendale, PA (2000).Google Scholar
2Gurson, A. L., “Continuum Theory of Ductile Rupture by Void Growth: Part I – Yield Criteria and Flow Rules for Porous Ductile Media,” J. Eng. Mater. Tech., 99, pp. 215 (1977).CrossRefGoogle Scholar
3Yamamoto, H., “Conditions for Shear Localization in the Ductile Fracture of Void Containing Materials,” Int. J. Fract., 11, pp. 347365 (1978).CrossRefGoogle Scholar
4Needleman, A. and Triantafyllidis, N., “Void Growth and Local Necking in Biaxial Stretched Sheets,” J. Eng. Mater. Tech., 100, pp. 164169 (1978).CrossRefGoogle Scholar
5Saje, M., Pan, J. and Needleman, A., “Void Nucleation Effects on Shear Localization in Porous Plastic Solids,” Int. J. Fract., 19, pp. 163182 (1982).CrossRefGoogle Scholar
6Tvergaard, V., “Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions,” Int. J. Fract., 17, pp. 389407 (1981).CrossRefGoogle Scholar
7Mear, M. E. and Hutchinson, J. W., “Influence of Yield Surface Curvature on Flow Localization in Dilatant Plasticity,” Mech. Mater., 4, pp. 395407 (1985).CrossRefGoogle Scholar
8Tvergaard, V., “On Localization in Ductile Materials Containing Spherical Voids,” Int. J. Fract., 18, pp. 237252 (1982).Google Scholar
9Pan, J., Saje, M. and Needleman, A., “Localization of Deformation in Rate Sensitive Porous Plastic Solids,” Int. J. Fract., 21, pp. 261278 (1983).CrossRefGoogle Scholar
10Tvergaard, V. and Needleman, A., “Analysis of the Cup-Cone Fracture in a Round Tensile Bar,” Acta Metal., 32, pp. 157169 (1984).CrossRefGoogle Scholar
11Graf, A. and Hosford, W. F., “Calculations of Forming Limit Diagrams,” Metall. Trans., 21A, pp. 8794 (1990).CrossRefGoogle Scholar
12Hill, R., “A Theory of the Yielding and Plastic Flow of Anisotropic Metals,” Roy. Soc. London Proc., 193A, pp. 281297 (1948).CrossRefGoogle Scholar
13Hosford, W. F., “On Yield Loci of Anisotropic Cubic Metals,” Proc. 7th North Am. Metalworking Res. Conf., SME, Dearborn, MI, pp. 191196 (1979).Google Scholar
14Liao, K.-C., Pan, J. and Tang, S. C., “Approximate Yield Criteria for Anisotropic Porous Ductile Sheet Metals,” Mech. Mater., 26, pp. 213226 (1997).CrossRefGoogle Scholar
15Hill, R., “Theoretical Plasticity of Textured Aggregates,” Math. Proc. Camb. Phil. Soc., 85, pp. 179191 (1979).CrossRefGoogle Scholar
16Chien, W. Y., Pan, J. and Tang, S. C., “Modified Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals,” J. Eng. Mater. Tech., 123, pp. 409416 (2001).CrossRefGoogle Scholar
17Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., Lege, D. J., Matsui, K., Murtha, S. J., Hattori, S., Becker, R. C. and Makosey, S., “Yield Function Development for Aluminum Alloy Sheets,” J. Mech. Phys. Solids, 45, pp. 17271763 (1997).CrossRefGoogle Scholar
18Yoon, J. W., Barlat, F. and Dick, R. E., “Sheet Metal Forming Simulation for Aluminum Alloy Sheets,” SAE Paper 2000-01-0774, Society of Automotive Engineers, Warrendale, PA (2000).Google Scholar
19Liao, K.-C, Friedman, P. A., Pan, J. and Tang, S. C., “Texture Development and Plastic Anisotropy of B.C.C. Strain Hardening Sheet Metals,” Int. J. Solids Struct., 35, pp. 52055236 (1998).CrossRefGoogle Scholar
20Wang, D.-A., Pan, J. and Liu, S.-D., “An Anisotropic Gurson Yield Criterion for Porous Ductile Sheet Metals with Planar Anisotropy,” submitted for publication in Int. J. Damage Mech. (2002).Google Scholar
21Hibbitt, H. D., Karlsson, B. I. and Sorensen, E. P., ABAQUS User Manual, Version 6-2 (2001).Google Scholar
22Chien, W. Y., Pan, J. and Tang, S. C., “A Combined Necking and Shear Localization Analysis of Aluminum Sheet Failure Under Biaxial Stretching Conditions,” to be submitted for publication (2002).Google Scholar
23Hill, R., “Acceleration Waves in Solids,” J. Mech. Phys. Solids, 10, pp. 116 (1962).CrossRefGoogle Scholar
24Rice, J. R., “The Localization of Plastic Deformation,” Proc. 14th Int. Cong. Theor. Appl. Mech., ed. Koiter, W. T., Delft, North-Holland, 1, pp. 207220 (1976).Google Scholar
25Jain, M., Allin, J. and Lloyd, D. J., “Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet,” Int. J. Mech. Sci., 41, pp. 12731288 (1999).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 1 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Gurson Yield Function for Anisotropic Porous Sheet Metals and its Applications to Failure Prediction of Aluminum Sheets
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *