Skip to main content Accessibility help
×
Home

Distributed Dislocation Method for Determining Elastic Fields of 2D and 3D Volume Misfit Particles in Infinite Space and Extension of the Method for Particles in Half Space

Published online by Cambridge University Press:  01 December 2014

J. D. Lerma
Affiliation:
Department of Mechanical Engineering, University of New Mexico New Mexico, USA
T. Khraishi
Affiliation:
Department of Mechanical Engineering, University of New Mexico New Mexico, USA
S. Kataria
Affiliation:
Department of Mechanical Engineering, University of New Mexico New Mexico, USA
Y.-L. Shen
Affiliation:
Department of Mechanical Engineering, University of New Mexico New Mexico, USA
Corresponding
E-mail address:
Get access

Abstract

A multitude of researchers have utilized a variety of techniques to formulate the stresses and deformations caused by volume misfit inclusions in infinite host media. Few of such techniques can also be extended to derive solutions for inclusions in a half space. In this manuscript we present a novel computational method for determining the elastic fields of two and three-dimensional inclusions of arbitrary shape in an infinite host matrix. The misfit strain is treated by a distribution of prismatic dislocation loops. A systematic numerical assessment illustrates that the discretization can yield excellent agreement with existing analytical solutions for certain particle geometries. This method is then further developed to solve for two-dimensional problems in a half space.

Type
Research Article
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2014 

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Teodosiu, C., Elastic Models of Crystal Defects, Springer-Verlag, Berlin, Germany (1982).CrossRefGoogle Scholar
2.Bert, N. A., Kolesnikova, A. L., Romanov, A. E. and Chaldyshev, V. V., “Elastic Behavior of a Spherical Inclusion with a Given Uniaxial Dilatation,” Physics of the Solid State, 44, pp. 21392148 (2002).CrossRefGoogle Scholar
3.Eshelby, J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems,” Proceedings of the Royal Society of London Series A, 221, pp. 376396 (1957).CrossRefGoogle Scholar
4.Eshelby, J. D., “Elastic Field Outside an Ellipsoidal Inclusion,” Proceedings of the Royal Society of London Series A, 252, pp. 561569 (1959).CrossRefGoogle Scholar
5.Pearson, G. S. and Faux, D. A., “Analytical Solution for Strain in Pyramidal Quantum Dots,” Journal of Applied Physics, 88, pp. 730736 (2000).CrossRefGoogle Scholar
6.Andreev, A. D., Downes, J. R., Faux, D. A. and O'Reilly, E. P., “Strain Distribution in Quantum Dots of Arbitrary Shape,” Journal of Applied Physics, 86, pp. 297305 (1999).CrossRefGoogle Scholar
7.Sheinerman, A. G. and Ovid'ko, I. A., “Elastic Fields of Inclusions in Nanocomposite Solids,” Reviews on Advanced Materials Science, 9, pp. 1733 (2005).Google Scholar
8.Melan, E., “Der Spannungszustand Der Durch Eine Einzelkraft Im Innern Beanspruchten Halbscheibe,” Journal of Applied Mathematics and Mechanics, 12, pp. 343346 (1932).Google Scholar
9.Mindlin, R. D., “Force at a Point in the Interior of a Semi-Infinite Solid,” Journal of Applied Physics, 7, pp. 195202 (1936).Google Scholar
10.Mindlin, R. D. and Cheng, D. H., “Nuclei of Strain in the Semi-Infinite Solid,” Journal of Applied Physics, 21, pp. 926930 (1950a).CrossRefGoogle Scholar
11.Mindlin, R. D. and Cheng, D. H., “Thermoelastic Stress in the Semi-Infinite Solid,” Journal of Applied Physics, 21, pp. 931933 (1950b).CrossRefGoogle Scholar
12.Aderogba, K., “On Eigenstress in a Semi-Infinite Solid,” Mathematical Proceedings of the Cambridge Philosophical Society, 80, pp. 555562 (1976).CrossRefGoogle Scholar
13.Chiu, Y. P., “On the Stress Field and Surface Deformation in a Half Space with a Cuboidal Zone in Which Initial Strains Are Uniform,” Journal of Applied Mechanics, 45, pp. 302306 (1978).CrossRefGoogle Scholar
14.Hu, S. M., “Stress from a Parallelepipedic Thermal Inclusion in a Semispace,” Journal of Applied Physics, 66, pp. 27412743 (1989).CrossRefGoogle Scholar
15.Seo, K. and Mura, T., “The Elastic Field in a Half Space Due to Ellipsoidal Inclusions with Uniform Dilatational Eigenstrains,” Journal of Applied Mechanics, 46, pp. 568572 (1979).CrossRefGoogle Scholar
16.Masmura, R. A. and Chou, Y. T., “Antiplane Eigenstrain Problem of an Elliptic Inclusion in an An-isotropic Half Space,” Journal of Applied Mechanics, 49, pp. 5254 (1982).CrossRefGoogle Scholar
17.Hasegawa, H., Lee, V. G. and Mura, T., “Hollow Circular Cylindrical Inclusion at the Surface of a Half-Space,” Journal of Applied Mechanics, 60, pp. 3340 (1993).CrossRefGoogle Scholar
18.Wu, L. Z. and Du, S. Y., “The Elastic Field in a Half-Space with a Circular Cylindrical Inclusion,” Journal of Applied Mechanics, 63, pp. 925932 (1996).CrossRefGoogle Scholar
19.Ru, C. Q., “Analytic Solution for Eshelby's Problem of an Inclusion of Arbitrary Shape in a Plane or Halp-Plane,” Journal of Applied Mechanics, 66, pp. 315322 (1999).CrossRefGoogle Scholar
20.Glas, F., “Coherent Stress Relaxation in a Half Space: Modulated Layers, Inclusions, Steps, and a General Solution,” Journal of Applied Physics, 70, pp. 35563571 (1991).CrossRefGoogle Scholar
21.Glas, F., “Elastic Relaxation of Truncated Pyramidal Quantum Dots and Quantum Wires in a Half Space: An Analytical Calculation,” Journal of Applied Physics, 90, pp. 32323241 (2001).CrossRefGoogle Scholar
22.Glas, F., “Analytical Calculation of the Strain Field of Single and Periodic Misfitting Polygonal Wires in a Half-Space,” Philosophical Magazine A, 82, pp. 25912608 (2002).CrossRefGoogle Scholar
23.Glas, F., “Elastic Relaxation of Isolated and Interacting Truncated Pyramidal Quantum Dots and Quantum Wires in a Half Space,” Applied Surface Science, 188, pp. 918 (2002b).CrossRefGoogle Scholar
24.Glas, F., “Elastic Relaxation of a Truncated Circular Cylinder with Uniform Dilatational Eigenstrain in a Half Space,” Physical Status Solidi, 237, pp. 599610 (2003).CrossRefGoogle Scholar
25.Romanov, A. E., Beltz, G. E., Fischer, W. T., Petroff, P. M. and Speck, J. S., “Elastic Fields of Quantum Dots in Subsurface Layers,” Journal of Applied Physics, 89, pp. 45234531 (2001).CrossRefGoogle Scholar
26.Pan, E. and Yang, B., “Elastostatic Fields in an Ani-sotropic Substrate Due to a Buried Quantum Dot,” Journal of Applied Physics, 90, pp. 61906196 (2001).CrossRefGoogle Scholar
27.Hirth, J. P. and Lothe, J., Theory of Dislocations, Krieger Publishing Company, Florida, U.S., pp. 8688 (1982).Google Scholar
28.Hull, D. and Bacon, D. J., Introduction to Dislocations, Butterworth-Heinemann, Oxford U.K., , pp. 7778 (1984).Google Scholar
29.Lerma, J., Khraishi, T., Shen, Y. L. and Wirth, B. D., “The Elastic Fields of Misfit Cylindrical Particles: A Dislocation-Based Numerical Approach,” Mechanics Research Communications, 30, pp. 325334 (2003).CrossRefGoogle Scholar
30.Devincre, B., “Three-Dimensional Stress-Field Expressions for Straight Dislocation Segments,” Solid State Communications, 93, pp. 875878 (1995).CrossRefGoogle Scholar
31.Bacon, D. and Groves, P. T., “The Dislocation in a Semi-Infinite Isotropic Medium,” Fundamental Aspects of Dislocation Theory, 1, pp. 3545 (1970).Google Scholar
32.Jing, P., “Modeling Irradiation Damage in Crystalline Solids,” M.S. Thesis, University of New Mexico, New Mexico, U.S. (2003).Google Scholar
33.Weertman, J., Dislocation Based Fracture Mechanics, World Scientific, Singapore (1996).CrossRefGoogle Scholar
34.Mura, T., Micromechanics of Defects in Solids, the Hague, Martinus Nijhoff Pub., the Netherlands (1982).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 31 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tvlwp Total loading time: 0.352 Render date: 2021-01-22T14:08:04.568Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Distributed Dislocation Method for Determining Elastic Fields of 2D and 3D Volume Misfit Particles in Infinite Space and Extension of the Method for Particles in Half Space
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Distributed Dislocation Method for Determining Elastic Fields of 2D and 3D Volume Misfit Particles in Infinite Space and Extension of the Method for Particles in Half Space
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Distributed Dislocation Method for Determining Elastic Fields of 2D and 3D Volume Misfit Particles in Infinite Space and Extension of the Method for Particles in Half Space
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *