Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T14:53:17.831Z Has data issue: false hasContentIssue false

Zirconia-mullite ceramics made from composite particles coated with amorphous phase: I. Effect of zirconia addition

Published online by Cambridge University Press:  03 March 2011

Jiin-Jyh Shyu
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan 10451, Republic of China
Yuan-Chieh Chen
Affiliation:
Department of Materials Engineering, Tatung Institute of Technology, Taipei, Taiwan 10451, Republic of China
Get access

Abstract

Mullite-based ceramics added with 0–20 vol % stabilized zirconia have been prepared by alumina/zirconia particles coated with an amorphous silica layer. All samples can be densified through the viscous flow of the amorphous silica layer in the typical temperature range of 1100–1310 °C. For the ZrO2-free mullite ceramics, the viscous densification kinetics is inhibited by increasing the content of the alumina inclusion particles and by crystallization of the amorphous silica layer. However, for the zirconia-mullite ceramics, the addition of the zirconia inclusion particles accelerates the viscous densifcation kinetics. Mullitization kinetics is also enhanced by the addition of zirconia. As the sintering temeperature is high, a porous, duplex microstructure is observed in samples with or without zirconia. Zirconia addition enhances the development of this microstructure. As the sintering temperature and/or zirconia content is increased, ZrO2 particles tend to coarsen, resulting in a decreased tetragonal to monoclinic ratio. Fracture toughness KlC increases with the zirconia content. Mullite-20 vol % ZrO2 composite sintered at 1600 °C has a KlC of 3.8 MPa · m1/2.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kanzaki, S. and Tabata, H., J. Am. Ceram. Soc. 68 (1), C6 (1985).CrossRefGoogle Scholar
2Dokko, P. C., Pask, J. A., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 60 (3–4), 150 (1977).CrossRefGoogle Scholar
3Lessing, P. A., Gordon, R. S., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 58 (3–4), 149 (1975).CrossRefGoogle Scholar
4De Portu, G. and Henney, J. W., Br. Ceram. Trans. J. 83 (3), 69 (1984).Google Scholar
5Boch, P. and Giry, J. P., Mater. Sci. Eng. 71 (1–2), 39 (1985).CrossRefGoogle Scholar
6Claussen, N. and Jahn, J., J. Am. Ceram. Soc. 63 (3–4), 228 (1980).CrossRefGoogle Scholar
7Boch, P. and Chartier, T., J. Am. Ceram. Soc. 74 (10), 2448 (1991).CrossRefGoogle Scholar
8Holmstrom, M., Chartier, T., and Boch, P., Mater. Sci. Eng. A109, 105 (1989).CrossRefGoogle Scholar
9Shiga, H., Katayama, K., Tsunatori, H., and Ismail, M. G. M. U., in Ceramic Transactions, Vol. 22: Ceramic Powder Science IV, edited by Hirano, S., Messing, G. L., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1991), p. 457.Google Scholar
10Rundgren, K., Elfving, P., Tabata, H., and Kanzaki, S., in Ceramic Transactions, Vol. 6: Mullite and Mullite Matrix Composites, edited by Sōmiya, S., Davis, R. F., and Pask, J. A. (The American Ceramic Society, Westerville, OH, 1990), p. 553.Google Scholar
11Prochazka, S., Wallace, J. S., and Claussen, N., J. Am. Ceram. Soc. 66 (8), C125 (1983).CrossRefGoogle Scholar
12Gherardi, P. and Matijević, E., J. Colloid Interface Sci. 109 (1), 57 (1986).CrossRefGoogle Scholar
13Okamura, H., Barringer, E. A., and Bowen, H. K., J. Am. Ceram. Soc. 69 (2), C22 (1986).CrossRefGoogle Scholar
14Kratohvil, S. and Matijević, E., Adv. Ceram. Mater. 2 (4), 798 (1987).CrossRefGoogle Scholar
15Okamura, H., Barringer, E. A., and Bowen, H. K., J. Mater. Sci. 24, 1867 (1989).CrossRefGoogle Scholar
16Garg, A. K. and De Jonghe, L.C., J. Mater. Res. 5, 136 (1990).CrossRefGoogle Scholar
17Sacks, M. D., Scheiffele, G. W., Bozkurt, N., and Raghunathan, R., in Ceramic Transactions, Vol. 22: Ceramic Powder Science IV, edited by Hirano, S., Messing, G. L., and Hausner, H. (The American Ceramic Society, Westerville, OH, 1991), p. 437.Google Scholar
18Sacks, M. D., Bozkurt, N., and Scheiffele, G. W., J. Am. Ceram. Soc. 74 (10), 2428 (1991).CrossRefGoogle Scholar
19Kapolnek, D. and De Jonghe, L. C., J. Eur. Ceram. Soc. 7 (6), 345 (1991).CrossRefGoogle Scholar
20Nakamura, H. and Kato, A., Ceram. Int. 18, 201 (1992).CrossRefGoogle Scholar
21Hu, C. L. and Rahaman, M. N., J. Am. Ceram. Soc. 75 (8), 2066 (1992).CrossRefGoogle Scholar
22Wang, J. G., Ponton, C. B., and Marquis, P. M., J. Am. Ceram. Soc. 75 (12), 3457 (1992).CrossRefGoogle Scholar
23Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59 (7–8), 371 (1976).CrossRefGoogle Scholar
24Rabinovich, E. M., in Advances in Ceramics, Vol. 4: Nucleation and Crystallization in Glasses, edited by Simmons, J. H., Uhlmann, D. R., and Beall, G. H. (The American Ceramic Society, Westerville, OH, 1982), p. 327.Google Scholar
25Scherer, G. W., Am. Ceram. Soc. Bull. 70 (6), 1059 (1991).Google Scholar