Skip to main content Accessibility help
×
Home

Zeolite–zeolite composite fabricated by polycrystalline Y zeolite crystals parasitizing ZSM-5 zeolite

  • Guangshuai Wang (a1), Yujian Liu (a2), Jiajun Zheng (a3), Meng Pan (a3), Hongyan Zhang (a3), Biao Li (a3), Shuai Yuan (a4), Yuming Yi (a5), Huiping Tian (a6) and Ruifeng Li (a7)...

Abstract

A series of zeolite–zeolite composites were prepared by a two-step hydrothermal crystallization procedure in which the mixture of presynthesized ZSM-5 zeolite acts as nutrients for the growth of postsynthesized Y zeolite, and the as-synthesized products are denoted as MFI–FAU. The structural, crystalline, and textural properties of the as-synthesized materials, as well as the references Y, ZSM-5, and a corresponding physical mixture composed of Y and ZSM-5 zeolite, were characterized by x-ray powder diffraction (XRD), Fourier transform infrared spectrum (FTIR), temperature-programmed desorption of ammonia, N2 adsorption–desorption, scanning electron microscopy, energy-dispersive spectrometry, and Thermogravimetry. The results show that the ratio of Y to ZSM-5 in the composite can be adjusted by controlling the hydrothermal treatment time of the second-step synthesis. Steric hindrance provoked by the concurrently growing crystals offers the postsynthesized Y zeolite phase, a relatively smaller size. A hierarchical pores system, which results from the extraction of silicon species from ZSM-5 and the polycrystalline accumulation of Y zeolite, has been created in the zeolite–zeolite composite. Catalytic performances of the zeolite–zeolite composite catalysts as well as the references catalysts were investigated during the catalytic cracking of isopropylbenzene. As compared with the corresponding physical mixture, the composite catalysts display the excellent catalytic performances with a higher conversion of isopropylbenzene as well as a longer catalytic life because of the introduced hierarchical pores system and the formation of special composite structure.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: rfli@tyut.edu.cn

References

Hide All
1.Groen, J.C., Moulijna, J.A., and Pérez-Ramírez, J.: Desilication: On the controlled generation of mesoporosity in MFI zeolites. J. Mater. Chem. 16, 2121 (2006).
2.Pérez-Ramírez, J., Christensen, C.H., Egeblad, K., Christensend, C.H., and Groen, J.C.: Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530 (2008).
3.Tao, Y.S., Kanoh, H., and Kaneko, K.: Synthesis of mesoporous zeolite A by resorcinol-formaldehyde aerogel templating. Langmuir 21, 504 (2005).
4.van Donk, S., Janssen, A.H., Bitter, J.H., and de Jong, K.P.: Generation, characterization, and impact of mespores in zeolite catalysts. Catal. Rev. Sci. Eng. 45, 297 (2003).
5.Verboekend, D. and Pérez-Ramírez, J.: Design of hierarchical zeolite catalysts by desilication. Catal. Sci. Technol. 1, 879 (2011).
6.Yang, X.Y., Tian, G., Chen, L.H., Li, Y., Liu, J.C., Deng, Z., Van Tendeloo, G., and Su, B.L.: Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance. Chem. Eur. J. 17, 14987 (2011).
7.Su, B.L., Sanchez, C., and Yang, X.Y.: Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science (Wiley-VCH Verlag & Co. KGaA, Weinheim, Germany, 2012).
8.Corma, A.: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373 (1997).
9.Xu, G.R., Wang, J.N., and Li, C.J.: Template-additive-free synthesis of binary zeolite microspheres with tunable hierarchical architectures and their removal abilities for organic pollutants. RSC Adv. 3, 12985 (2013).
10.Zheng, J.J., Zeng, Q.H., Yi, Y.M., Wang, Y., Ma, J.H., Qin, B., Zhang, X.W., Sun, W.F., and Li, R.F.: The hierarchical effects of zeolite composites in catalysis. Catal. Today 168, 124 (2011).
11.Zheng, J.J., Zeng, Q.H., Zhang, Y.Y., Wang, Y., Ma, J.H., Zhang, X.W., Sun, W.F., and Li, R.F.: Hierarchical porous zeolite composite with a core-shell structure fabricated using β-zeolite crystals as nutrients as well as cores. Chem. Mater. 22, 6065 (2010).
12.Yu, H.J., Lv, Y.Y., Ma, K.Y., Wang, C.G., Xue, Z.T., Zhao, Y.J., Deng, Y.H., Dai, Y., and Zhao, D.Y.: Synthesis of core-shell structured zeolite A@mesoporous silica composites for butyraldehyde adsorption. J. Colloid Interface Sci. 428, 251 (2014).
13.Ren, B., Bai, S.Y., Sun, J.H., Zhang, F.Q., and Fan, M.H.: Controllable synthesis of obvious core-shell structured Y/beta composite zeolite by a stepwise-induced method. RSC Adv. 4, 22755 (2014).
14.Teng, H., Wang, J., Chen, D.M., Liu, P., and Wang, X.C.: Silicalite-1 membrane on millimeter-sized HZSM-5 zeolite extrudates: Controllable synthesis and catalytic behavior in toluene disproportionation. J. Membr. Sci. 381, 197 (2011).
15.Pirngruber, G.D., Laroche, C., Maricar-Pichon, M., Rouleau, L., Bouizi, Y., and Valtchev, V.: Core-shell zeolite composite with enhanced selectivity for the separation of branched paraffin isomers. Micropor. Mesopor. Mater. 169, 212 (2013).
16.Qian, X.F., Du, J.M., Li, B., Si, M., Yang, Y.S., Hu, Y.Y., Niu, G.X., Zhang, Y.H., Xu, H.L., Tu, B., Tang, Y., and Zhao, D.Y.: Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites. Chem. Sci. 2, 2006 (2011).
17.Jia, L.X., Sun, X.Y., Ye, X.Q., Zou, C.L., Gu, H.F., Huang, Y., Niu, G.X., and Zhao, D.Y.: Core-shell composites of USY@Mesosilica: Synthesis and application in cracking heavy molecules with high liquid yield. Micropor. Mesopor. Mater. 176, 16 (2013).
18.Qian, X.F., Li, B., Hu, Y.Y., Niu, G.X., Zhang, D.Y., Che, R.C., Tang, Y., Su, D.S., Asiri, A.M., and Zhao, D.Y.: Exploring meso-/microporous composite molecular sieves with core-shell structures. Chem. Eur. J. 18, 913 (2012).
19.Lv, Y.Y., Qian, X.F., Tu, B., and Zhao, D.Y.: Generalized synthesis of core-shell structured nano-zeolite@ordered mesoporous silica composites. Catal. Today 204, 2 (2013).
20.Zhang, J.Q., Fan, W.B., Liu, Y.Y., and Li, R.F.: Synthesis and catalytic property of a Co2+-exchanged beta/Y composite for the selective catalytic reduction of NO by CH4 in the presence of excess oxygen. Appl. Catal., B 76, 174 (2007).
21.Okamoto, M. and Osafune, Y.: MFI-type zeolite with a core–shell structure with minimal defects synthesized by crystal overgrowth of aluminum-free MFI-type zeolite on aluminum-containing zeolite and its catalytic performance. Micropor. Mesopor. Mater. 143, 413 (2011).
22.Guo, W.P., Xiong, C.R., Huang, L.M., and Li, Q.Z.: Synthesis and characterization of composite molecular sieves comprising zeolite beta with MCM-41 structures. J. Mater. Chem. 11, 1886 (2001).
23.Huang, L.M., Guo, W.P., Deng, P., Xue, Z.Y., and Li, Q.Z.: Investigation of synthesizing MCM-41/ZSM-5 composites. J. Phys. Chem. B 104, 2817 (2000).
24.Milina, M., Mitchell, S., Crivelli, P., Cooke, D., and Pérez-Ramírez, J.: Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts. Nature Commun. 5, 3922 (2014).
25.Bouizi, Y., Rouleau, L., and Valtchev, V.P.: Factors controlling the formation of core-shell zeolite-zeolite composites. Chem. Mater. 18, 4959 (2006).
26.Bouizi, Y., Diaz, I., Rouleau, L., and Valtchev, V.P.: Core–shell zeolite microcomposites. Adv. Funct. Mater. 15, 1955 (2005).
27.Burger, B., Haas-Santo, K., Hunger, M., and Weitkamp, J.: Synthesis and characterization of aluminium-rich zeolite ZSM-5. Chem. Eng. Technol. 23, 322 (2000).
28.Yee, M. and Yaacob, I.I.: Synthesis and characterization of iron oxide nanostructured particles in Na–Y zeolite matrix. J. Mater. Res. 19, 930 (2004).
29.Jin, F., Cui, Y., Rui, Z., and Li, Y.: Effect of sequential desilication and dealumination on catalytic performance of ZSM-5 catalyst for pyridine and 3-picoline synthesis. J. Mater. Res. 25, 272 (2010).
30.Greer, H., Wheatley, P.S., Ashbrook, S.E., Morris, R.E., and Zhou, W.Z.: Early stage reversed crystal growth of zeolite A and its phase. J. Am. Chem. Soc. 131, 17986 (2009).
31.Zeng, Q.H., Bai, X., Zheng, J.J., Chen, J.Q., and Li, R.F.: Growth of ZSM-5 crystals within hollow β-zeolite. Chin. Chem. Lett. 22, 1103 (2011).
32.Groen, J.C., Zhu, W., Brouwer, S., Huynink, S.J., Kapteijn, F., Moulijn, J.A., and Pérez-Ramírez, J.: Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc. 129, 355 (2007).
33.Groen, J.C., Bach, T., Ziese, U., van Donk, A.M.P., de Jong, K.P., Moulijn, J.A., and Pérez-Ramírez, J.: Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J. Am. Chem. Soc. 127, 10792 (2005).
34.Zheng, J.J., Zeng, Q.H., Ma, J.H., Zhang, X.W., Sun, W.F., and Li, R.F.: Synthesis of hollow zeolite composite spheres by using β-zeolite crystal as template. Chem. Lett. 39, 330 (2010).
35.Ohsuna, T., Terasaki, O., Nakagawa, Y., Zones, S.I., and Hiraga, K.: Electron microscopic study of intergrowth of MFL and MEL: Crystal faults B-MEL. J. Phys. Chem. B 101, 9881 (1997).
36.Dutta, P.K. and Bronic, J.: Mechanism of zeolite formation: Seed-gel interaction. Zeolites 14, 250 (1994).
37.Kosanović, C., Havancsák, K., Subotić, B., Svetličić, V., Radić, T.M., Cziráki, Á., Huhn, G., Buljan, I., and Smrečki, V.: Study of the mechanism of formation of nano-crystalline zeolite X in heterogeneous system. Micropor. Mesopor. Mater. 142, 139 (2011).
38.Wang, D.J., Liu, Z.N., Wang, H., Xie, Z.K., and Tang, Y.: Shape-controlled synthesis of monolithic ZSM-5 zeolite with hierarchical strcuture and mechanical stability. Micropor. Mesopor. Mater. 132, 428 (2010).
39.Morsli, A., Driole, M.F., Cacciaguerra, T., Arletti, R., Chiche, B., Hamidi, F., Bengueddach, A., Quignard, F., and Di Renzo, F.: Microporsity of the amorphous aluminosilicate precursors of zeolites: The case of the gels of synthesis of mordenite. Micropor. Mesopor. Mater. 104, 209 (2007).
40.Chen, H.Y., Lee, P-S., Zhang, X.Y., and Lu, D.: Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. J. Mater. Res. 28, 1356 (2013).
41.Bjøgen, M., Joensen, F., Holm, M.S., Olsbye, U., Lillerud, K-P., and Svelle, S.: Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Appl. Catal., A 345, 43 (2008).
42.Simon-Masseron, A., Marques, J.P., Lopes, J.M., Ramô Ribeiro, F., Gener, I., and Guisnet, M.: Influence of the Si/Al ratio and crystal size on the acidity and activity of HBEA zeolites. Appl. Catal., A 316, 75 (2007).
43.Dzikh, I.P., Lopes, J.M., Lemos, F., and Ribeiro, F.R.: Mixing effect of USHY+HZSM-5 for different catalyst ratios on the n-heptane transformation. Appl. Catal., A 176, 239 (1999).
44.Dzikh, I.P., Lopes, J.M., Lemos, F., and Ribeiro, F.R.: Temperature dependence of the USHY+HZSM-5 mixing effect on the n-heptane transformation. Catal. Today 65, 143 (2001).
45.Zhang, L.K., Qu, S.D., Wang, L., Zhang, X.W., and Liu, G.Z.: Preparation and performance of hierarchical HZSM-5 coatings on stainless-steeled microchannels for catalytic cracking of hydrocarbons. Catal. Today 216, 64 (2013).
46.Xian, X.C., Liu, G.Z., Zhang, X.W., Wang, L., and Mi, Z.T.: Catalytic cracking of n-dodecane over HZSM-5 zeolite under supercritical conditions: Experiments and kinetics. Chem. Eng. Sci. 65, 5588 (2010).
47.Diao, Z.H., Wang, L., Zhang, X.W., and Liu, G.Z.: Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites. Chem. Eng. Sci. http://dx.doi.org/10.1016/j.ces.2014.12.048.
48.Martínez, A., Peris, E., Derewinski, M., and Burkat-Dulak, A.: Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catal. Today 169, 75 (2011).
49.Zheng, J.J., Zhang, X.W., Zhang, Y., Ma, J.H., and Li, R.F.: Structural effects of hierarchical pores in zeolite composite. Micropor. Mesopor. Mater. 122, 264 (2009).
50.Na, K. and·Somorjai, G.A.: Hierarchically nanoporous zeolites and their heterogeneous catalysis: current status and future perspectives. Catal. Lett. 145, 193 (2015).
51.Lemaire, A., Rooke, J.C., Chen, L.H., and Su, B.L.: Direct observation of macrostructure formation of hierarchically structured meso-macroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir 27, 3030 (2011).
52.Li, Y., Yang, X.Y., Tian, G., Vantomme, A., Yu, J., Tendeloo, G.V., and Su, B.L.: Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chem. Mater. 22, 3251 (2010).
53.Zheng, J.J., Wang, G.S., Pan, M., Guo, D.L., Zhao, Q.Q., Li, B., and Li, R.F.: Hierarchical core-shell zeolite composite ZSM-5@SAPO-34 fabricated by using ZSM-5 as the nutrients for the growth of SAPO-34. Micropor. Mesopor. Mater. 206, 114 (2015).
54.Zhao, Q.Q., Qin, B., Zheng, J.J., Du, Y.Z., Sun, W.F., Ling, F.X., Zhang, X.W., and Li, R.F.: Core-shell structured zeolite-zeolite composites comprising Y zeolite cores and nano-β zeolite shells: Synthesis and application in hydrocracking of VGO oil. Chem. Eng. J. 257, 262 (2014).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed