Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T15:55:25.929Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy characterization of barium titanate ceramics prepared by the citric route. Residual carbon study

Published online by Cambridge University Press:  31 January 2011

C. Miot
Affiliation:
CRPHT, CNRS UPR 4212, 45071 Orléans cedex 2, France
E. Husson
Affiliation:
CRPHT, CNRS UPR 4212, 45071 Orléans cedex 2, and ESEM, Université d'Orléans, 45072 Orléans cedex 2, France
C. Proust
Affiliation:
CRPHT, CNRS UPR 4212, 45071 Orléans cedex 2, and ESEM, Université d'Orléans, 45072 Orléans cedex 2, France
R. Erre
Affiliation:
CRMD, CNRS et Université d'Orléans, 45071 Orléans cedex 2, France
J. P. Coutures
Affiliation:
CRPHT, CNRS UPR 4212, 45071 Orléans cedex 2, France
Get access

Abstract

Powder and ceramics of barium titanate prepared by the citric process were studied by x-ray photoelectron spectroscopy (XPS). Spectra of C1s, O1s, Ti2p, Ba3d, and Ba4d levels are analyzed in powder and ceramics immediately after the sintering step and after several months of exposure in the air. Ar-ion etching allowed one to characterize the material intrinsic carbon. The results are discussed in comparison with works previously published on oxide single crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Barboux, P., Griesmar, P., Ribot, F., and Mazerolles, L., J. Solid State Chem. 117, 343 (1995).CrossRefGoogle Scholar
2.Wengeler, H., Knobel, R., Kathrein, H., Freund, F., Demortier, G., and Wolff, G., J. Phys. Chem. Solids 43, 59 (1982).CrossRefGoogle Scholar
3.Oberheuser, G., Kathrein, H., Demortier, G., Gonska, H., and Freund, F., Geochimica and Cosmochimica Acta 47, 1117 (1983).CrossRefGoogle Scholar
4.Freund, F., Wengeler, H., Kathrein, H., Knobel, R., Oberheuser, G., Maiti, G. C., Reil, D., Knipping, U., and Kotz, J., Bull. Mineral. 106, 185 (1983).Google Scholar
5.Freund, F., J. de Physique Colloque C1 47, 499 (1986).Google Scholar
6.Le Calvé-Proust, C., Husson, E., Blondiaux, G., and Coutures, J. P., J. Eur. Ceram. Soc. 14, 215 (1994).CrossRefGoogle Scholar
7.Miot, C., Proust, C., Husson, E., Blondiaux, G., and Coutures, J. P., J. Eur. Ceram. Soc. (in press).Google Scholar
8.Mukhopadhyay, S. M. and Chen, T. C. S., J. Mater. Res. 10, 1502 (1995).CrossRefGoogle Scholar
9.Coutures, J. P., Odier, P., and Proust, C., J. Mater. Sci. 27, 1849 (1992).CrossRefGoogle Scholar
10.Le Calvé-Proust, C., Husson, E., Odier, P., and Coutures, J. P., J. Eur. Ceram. Soc. 12, 153 (1993).CrossRefGoogle Scholar
11.Proust, C., Miot, C., and Husson, E., J. Eur. Ceram. Soc. 15, 631 (1995).CrossRefGoogle Scholar
12.Miot, C., Proust, C., and Husson, E., J. Eur. Ceram. Soc. 15, 1163 (1995).CrossRefGoogle Scholar
13.Seah, M. P. and Dench, W. A., Surf. Int. Anal. 1, 2 (1979).CrossRefGoogle Scholar
14.Hung, C. C., Riman, R. E., and Caracciolo, R., Proc. Third Intern. Conf. on Powder Processing Sci., San Diego, CA (1990), pp. 1721.Google Scholar
15.Fukuda, Y., Nagoshi, M., Suzuki, T., Namha, Y., Syono, Y., and Tachiki, M., Phys. Rev. B 39, 11,494–11,497 (1989).Google Scholar
16.Mukhopadhyay, S. M. and Chen, C. S., J. Appl. Phys. 74, 873876 (1993).CrossRefGoogle Scholar
17.Demartin, M., Herard, C., Lemaître, J., and Carry, C., Euroceramics III 1, 775 (1993).Google Scholar
18.Herard, C., Faivre, A., and Lemaître, J., J. Eur. Ceram. Soc. 15, 135 (1995).CrossRefGoogle Scholar
19.Herard, C., Faivre, A., and Lemaître, J., J. Eur. Ceram. Soc. 15, 145 (1995).CrossRefGoogle Scholar
20.Seibt, E. W., Jeremie, A., and Flükiger, R., Thin Solid Films 228, 196 (1993).CrossRefGoogle Scholar
21.Pellerin, N., Gotor, F. J., Odier, P., Ayache, J., Fert, A., Cazy, E., and Bonnet, J. P., Physica C 235–240, 381 (1994).CrossRefGoogle Scholar