Skip to main content Accessibility help

Wüstite nanocrystals: Synthesis, structure and superlattice formation

  • Ming Yin (a1), Zhuoying Chen (a1), Brian Deegan (a1) and Stephen O’Brien (a1)


Monodisperse ligand-capped cubic wüstite FexO nanocrystals were prepared by a novel thermal decomposition method of iron (II) acetate in the presence of oleic acid as the surfactant. Controlled size distributions of cubic nanoparticles possessing the rock salt crystal structure were isolated in the range 10–18 nm. The influence of molar ratio of surfactant to precursor was investigated to understand size control and monodispersity. Using inexpensive, nontoxic metal salts as reactants, we were able to synthesize gram-scale quantities of relatively monodisperse nanocrystals in a single reaction, without further size selection, characterized by x-ray diffraction and transmission electron microscopy. The procedure enables the collection of samples of uniform size as a function of time, thus permitting a preliminary solid-state kinetic analysis of the reaction as a function of increasing particle size. Following controlled evaporation from nonpolar solvents, self-assembly into two-dimensional arrays, three-dimensional single-component superlattices, and binary superlattices with gold nanoparticles were observed and characterized.


Corresponding author

a)Current address: Los Alamos National Laboratory, Los Alamos, NM 87545
b)Address all correspondence to this author. e-mail:


Hide All
1O’Brien, S., Murray, C.B. Brus, L.E.: Synthesis of monodisperse nanoparticles of barium titanate: Toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 2001
2Park, J., An, K., Hwang, Y., Park, J-G., Noh, H-J., Kim, J-Y., Park, J-H., Hwang, N-M. Hyeon, T.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891 2004
3Pinna, N., Grancharov, S., Beato, P., Bonville, P., Antonietti, M. Niederberger, M.: Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility. Chem. Mater. 17, 3044 2005
4Cornell, R.M. Schwertmann, U.: The Iron Oxides John Wiley & Sons: New York 1997
5Sun, S. Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204 2002
6Andreas Jordan, R.S., Wust, P., Fähling, H. Felix, R.: Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413 1999
7Kim, D.K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B. Muhammed, M.: Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. J. Magn. Magn. Mater. 225, 256 2001
8Yin, M. O’Brien, S.: Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 125, 10180 2003
9Yin, M., Wu, C-K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y. O’Brien, S.: Copper oxide nanocrystals, J. Am. Ceram. Soc. 127, 9506 2005
10Yin, M., Gu, Y., Kuskovsky, I.L., Andelman, T., Zhu, Y., Neumark, G.F. O’Brien, S.: Zinc oxide quantum rods. J. Am. Ceram. Soc. 126, 6206 2004
11Nagakura, S., Ishiguro, T. Nakamura, Y.: Structure of Wuestite Observed by UHV-HR-1 MV Electron Microscope, Dept. Metall., Tokyo Inst. Technol., Tokyo, Japan. 1983
12Radler, M.J.: X-ray and Neutron Diffraction Studies of the Defect Structure of Wuestite and Manganosite Northwestern University, Evanston, IL 1990 407
13Gavarri, J. R., Carel, C. Weigel, D.: Reexamination of the cluster structure of the P′ and P″ quenched wuestites. C.R. Acad. Sci., Ser. 2 307, 705 1988
14Fjellvag, H., Hauback, B.C., Vogt, T. Stolen, S.: Monoclinic nearly stoichiometric wustite at low temperatures. American Mineralogist. 87, 347 2002
15Fjellvag, H., Gronvold, F., Stolen, S. Hauback, B.: On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. J. Solid State Chem. 124, 52 1996
16Stolen, S., Gloeckner, R. Gronvold, F.: Nearly stoichiometric iron monoxide formed as a metastable intermediate in a two-stage disproportionation of quenched wuestite. Thermodynamic and kinetic aspects. Thermochim. Acta 256, 91 1995
17Redl, F.X., Black, C.T., Papaefthymiou, G.C., Sandstrom, R.L., Yin, M., Zeng, H., Murray, C.B. O’Brien, S.P.: Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J. Am. Chem. Soc. 126, 14583 2004
18Ayyub, P., Palkar, V.R., Chattopadhyay, S. Multani, M.: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135 1995
19Herhold, A.B., Chen, C-C., Johnson, C.S., Tolbert, S.H. Alivisatos, A.P.: Structural transformations and metastability in semiconductor nanocrystals. Phase Transitions 68, 1 1999
20Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F. Ratna, B.R.: Size-induced transition-temperature reduction in nanoparticles on ZnS. Phys. Rev. B 60, 9191 1999
21Jana, N., Chen, Y. Peng, X.: Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 20, 3931 2004
22Jun, Y-W., Choi, J-S. Cheon, J.: Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. Engl. 45, 3414 2006
23Greene, L.E., Yuhas, B.D., Law, M., Zitoun, D. Yang, P.: Solution-grown zinc oxide nanowires. Inorg. Chem. 45, 7535 2006
24Wang, X., Chen, X., Gao, L., Zheng, H., Zhang, Z. Qian, Y.: One-dimensional arrays of Co3O4 nanoparticles: Synthesis, characterization, and optical and electrochemical properties. J. Phys. Chem. B 108, 16401 2004
25Jun, Y-W., Lee, J-H., Choi, J-S. Cheon, J.: Symmetry-controlled colloidal nanocrystals: Nonhydrolytic chemical synthesis and shape determining parameters. J. Phys. Chem. B 109, 14795 2005
26Ding, J., Miao, W.F., Pirault, E., Street, R. McCormick, P.G.: Structural evolution of Fe + Fe2O3 during mechanical milling. J. Magn. Magn. Mater. 177, 933 1998
27Ding, J., Miao, W.F., Street, R. McCormick, P.G.: Fe3O4/Fe magnetic composite synthesized by mechanical alloying. Scripta Mater. 35, 1307 1996
28Hyeon, T., Lee, S.S., Park, J., Chung, Y. Na, H.B.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798 2001
29Francis, R.J., O’Brien, S., Fogg, A.M., Halasyamani, P.S., O’Hare, D., Loiseau, T. Ferey, G.: Time-resolved in-situ energy and angular dispersive x-ray diffraction studies of the formation of the microporous gallophosphate ULM-5 under hydrothermal conditions. J. Am. Chem. Soc. 121, 1002 1999
30Hancock, J.D. Sharp, J.H.: Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55, 74 1972
32Redl, F.X., Cho, K.S., Murray, C.B. O’Brien, S.: Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 423, 968 2003
33Zeng, H., Li, J., Liu, J.P., Wang, Z.L. Sun, S.: Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 420, 395 2002
34Shevchenko, E.V., Talapin, D.V., O’Brien, S. Murray, C.B.: Polymorphism in AB(13) nanoparticle superlattices: An example of semiconductor-metal metamaterials. J. Am. Chem. Soc. 127, 8741 2005
35Shevchenko, E.V., Talapin, D.V., Kotov, N.A., O’Brien, S. Murray, C.B.: Structural diversity in nanoparticle superlattices. Nature 439, 55 2005
36Shevchenko, E.V., Talapin, D.V., Murray, C.B. O’Brien, S.: Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 28(11), 3620 2006
37Prasad, B.L.V., Stoeva, S.I., Sorensen, C.M. Klabunde, K.J.: Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18, 7515 2002



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed