Skip to main content Accessibility help

Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles

  • Teruyoshi Sakata (a1), Derrick M. Mott (a1) and Shinya Maenosono (a1)


The intermetallic materials digold bismuthide, gold diantimonide, and gold ditelluride were chemically synthesized with a bottom-up wet chemical approach, which has not been achieved before. These gold-based materials display a nano- to microparticle grain size and a well-defined composition-based structure. True intermetallic nanoparticle-based materials have traditionally proven challenging to obtain via wet chemical approaches, making the materials created here significant from a fundamental synthesis standpoint. The knowledge gained by developing reliable synthesis approaches toward intermetallic nanoparticles may be used to develop new materials and enhance the understanding of how to refine the characteristics and enhanced properties of emerging nanoparticle semiconductor materials in advanced applications such as for thermoelectrics.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Zhang, Y., Wang, H., Kraemer, S., Shi, Y., Zhang, F., Snedaker, M., Ding, K., Moskovits, M., Snyer, G.J., and Stucky, G.D.: Surfactant-free synthesis of Bi2Te3-Te micro-nano heterostructure with enhanced thermoelectric figure of merit. ACS Nano 5, 3158 (2011).
2.Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C., and Weller, H.: Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476 (2009).
3.Zhao, Y., Dyck, J.S., Hernandez, B.M., and Burda, C.: Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 4982 (2010).
4.Chen, J., Sun, T., Sim, D.H., Peng, H., Wang, H., Fan, S., Hng, H.H., Ma, J., Boey, F.Y.C., Li, S., Samani, M.K., Chen, G.C.K., Chen, X., Wu, T., and Yan, Q.: Sb2Te3 nanoparticles with enhanced Seebeck coefficient and low thermal conductivity. Chem. Mater. 22, 3086 (2010).
5.Mott, D., Mai, N.T., Thuy, N.T.B., Maeda, Y., Linh, T.P.T., Koyano, M., and Maenosono, S.: Bismuth, antimony and tellurium alloy nanoparticles with controllable shape and composition for efficient thermoelectric devices. Phys. Status Solidi A 208, 52 (2011).
6.Mai, N.T., Mott, D., Thuy, N.T.B., Osaka, I., and Maenosono, S.: Study on formation mechanism and ligand-directed architectural control of nanoparticles composed of Bi, Sb and Te: Towards one-pot synthesis of ternary (Bi, Sb)2Te3 nanobuilding blocks. RSC Adv. 1, 1089 (2011).
7.Biswas, K., He, J., Blum, I.D., Wu, C., Hogan, T.P., Seidman, D.N., Dravid, V.P., and Kanatzidis, M.G.: High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012).
8.Wang, L., Luo, J., Schadt, M.J., and Zhong, C.J.: Thin film assemblies of molecularly-linked metal nanoparticles and multifunctional properties. Langmuir 26, 618 (2010).
9.Maye, M.M., Luo, J., Lim, I.S., Han, L., Kariuki, N.N., Rabinovich, D., Lu, T., and Zhong, C.J.: Size-controlled assembly of gold nanoparticles induced by a tridentate thioether ligand. J. Am. Chem. Soc. 125, 9906 (2003).
10.Vaughan, J.P.: The process mineralogy of gold: The classification of ore types. JOM 56, 46 (2004).
11.Charoenphakdee, A., Kurosaki, K., Harnwunggmoung, A., Muta, H., and Yamanaka, S.: Thermoelectric properties of gold telluride: AuTe2. J. Alloys Compd. 496, 53 (2010).
12.Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-3093.
13.Reference data taken from the International Centre for Diffraction Data database 2013, card number 00-008-0460.
14.Reference data taken from the International Centre for Diffraction Data database 2013, card number 03-065-2307.
15.Lim, I.S., Mott, D., Engelhard, M.H., Pan, Y., Kamodia, S., Luo, J., Njoki, P.N., Zhou, S., Wang, L., and Zhong, C-J.: Interparticle chiral recognition of enantiomers: A nanoparticle-based recognition strategy. Anal. Chem. 81, 689 (2009).
16.NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 (National Institute of Standards and technology, Gaithersburg, 2012),
17.Schneider, W.D. and Laubschat, C.: Actinide-noble-metal systems: An X-ray-photoelectron-spectroscopy study of thorium-platinum, uranium-platinum, and uranium-gold intermetallics. Phys. Rev. B 23, 997 (1981).
18.Van Attekum, P.M. and Trooster, J.M.: Bulk- and surface-plasmon-loss intensities in photoelectron, auger, and electron-energy-loss spectra of Mg metal. Phys. Rev. B 20, 2335 (1979).
19.Debies, T.P. and Rabalais, J.W.: X-ray photoelectron spectra and electronic structure of Bi2X3 (X=O, S, Se, Te). Chem. Phys. 20, 277 (1977).
20.Sham, T.K., Perlman, M.L., and Watson, R.E.: Electronic behavior in alloys: Gold-non-transition-metal intermetallics. Phys. Rev. B 19, 539 (1979).
21.Benvenutti, E.V., Gushikem, Y., Vasquez, A., de Castro, S.C., and Zaldivar, G.A.P.: X-ray photoelectron spectroscopy and mössbauer spectroscopy study of iron(III) and antimony(V) oxides grafted onto a silica gel surface. J. Chem. Soc., Chem. Commun. 19, 1325 (1991).
22.Christie, A.B., Sutherland, I., and Walls, J.M.: Studies of the composition, ion-induced reduction and preferential sputtering of anodic oxide films on Hg0.8Cd0.2Te by XPS. Surf. Sci. 135, 225 (1983).
23.Young, C.A. and Luttrell, G.H.: Separation Technologies for Minerals, Coal, and Earth Resources, Society for Mining, Metallurgy, and Exploration, Inc (SME, Englewood, CO, 2012).


Related content

Powered by UNSILO

Wet-chemical preparation of digold bismuthide, gold diantimonide, and gold ditelluride particles

  • Teruyoshi Sakata (a1), Derrick M. Mott (a1) and Shinya Maenosono (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.