Skip to main content Accessibility help
×
Home

Viscoelastic behavior of a soda-lime-silica glass in the 293–833 K range by micro-indentation

  • Haixia Shang (a1), Tanguy Rouxel (a1), Marc Buckley (a1) and Cedric Bernard (a1)

Abstract

The viscoelastic behavior of a soda-lime silica glass (a standard window glass) was investigated by means of Vickers indentation from room temperature to 833 K. Hardness values decrease gradually from 293 to 673 K and drop rapidly above 673 K. The flow kinetics of the glass at high temperature was analyzed in the light of atomic force microscopy observations. It was observed that densification significantly contributes to the permanent deformation at low temperatures, whereas volume conservative flow played a more and more important role as temperature was increased. Master curves of the relaxation modulus and the creep compliance were obtained from constant-rate and constant-load indentation experiments, respectively. A major finding was that the viscous flow process is nonlinear, with a sharp decrease of the apparent viscosity as the mean contact pressure increases.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: tanguy.rouxel@univ-rennes1.fr

References

Hide All
1.Lucas, G.E., Pendleton, C.: Time-dependent flow properties from indentation tests. J. Nucl. Mater. 104, 1539 (1981).
2.Cook, R.F., Pharr, G.M.: Direct observation and analysis of indentation cracking in glasses and ceramics. J. Am. Ceram. Soc. 73, 787 (1990).
3.Lawn, B.: Fracture of Brittle Solids (Cambridge Univ. Press, Cambridge, UK, 1993), pp. 249, 304.
4.Cseh, G., Chinh, N.Q., Tasnádi, P., Szommer, P., Juhász, A.: Indentation test for the investigation of plasticity of glasses. J. Mater. Sci. 32, 1733 (1997).
5.Grau, P., Berg, G., Meinhard, H., Mosch, S.: Strain rate dependence of the hardness of glass and Meyer’s law. J. Am. Ceram. Soc. 81, 1557 (1998).
6.Cseh, G., Chinh, N.Q., Juhász, A.: Indentation curves and viscosity measurements on glasses. J. Mater. Sci. Lett. 17, 1207 (1998).
7.Schuh, C.A., Nieh, T.G.: A Survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).
8.Bourhis, E. Le, Rouxel, T.: Indentation response of glass with temperature. J. Non-Cryst. Solids 316, 153 (2003).
9.Shang, H.X., Rouxel, T.: Creep behavior of soda-lime glass in the 100–500 K temperature range by indentation creep test. J. Am. Ceram. Soc. 88, 2625 (2005).
10.Watanabe, T., Puratsubaki, K., Benino, Y., Saitoh, H., Komatsu, T.: Hardness and elastic properties of Bi2O3-based glasses. J. Mater. Sci. 36, 2474 (2001).
11.Westbrook, J.H.: The temperature dependence of hardness of some common oxides. Rev. Hautes Tempér. Réfract. 3, 47 (1966).
12.Neely, J.E., Mackenzie, J.D.: Hardness and low-temperature deformation of silica glass. J. Mater. Sci. 4, 603 (1968).
13.Douglas, R.W.: Some comments on indentation tests on glass. J. Soc. Glass Technol. 42, 145T (1958).
14.Simmons, J.H., Ochoa, R., Simmons, K.D., Mills, J.J.: Non-Newtonian viscous flow in soda-lime-silica glass at forming and annealing temperatures. J. Non-Cryst. Solids 105, 313 (1988).
15.Li, J.H., Uhlmann, D.R.: The flow of glass at high stress levels I. Non-Newtonian behavior of homogeneous 0.08 Rb2O·0.92 SiO2 glasses. J. Non-Cryst. Solids 3, 127 (1970).
16.Guin, J.P., Rouxel, T., Keryvin, V., Sangleboeuf, J.C., Serre, I., Lucas, J.: Indentation creep of Ge–Se chalcogenide glasses below Tg: Elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids 298, 260 (2002).
17.Westbrook, J.H., Jorgensen, P.J.: Indentation creep of solids. Trans. AIME 233, 425 (1965).
18.Westbrook, J.H. Some effects of adsorbed water in the plastic deformation of non-metallic solids, in Environment Sensitive Mechanical Behavior, edited by Westwood, A.R.C. and Stoloff, N.S. (Gordon Beach, NY, 1966), p. 247.
19.Griggs, D.T.: Hydrolytic weakening of quartz and other silicates. J. R. Astron. Soc. 14, 19 (1967).
20.Radok, J.R.M.: Viscoelastic stress analysis. Quart. Appl. Math. 15, 198 (1957).
21.Lee, E.H., Radok, J.R.M.: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).
22.Ting, T.C.T.: The contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).
23.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq’s problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).
24.Matzke, H., Linker, G.: Fracture toughness and leaching behavior of ion bombarded waste glasses. J. Nucl. Instrum. Meth. Phys. Res. B1, 569 (1984).
25.Sakai, M., Shimizu, S.: Indentation rheometry for glass-forming materials. J. Non-Cryst. Solids 282, 236 (2001).
26.Brink, J.P.V.D.: Master stress relaxation function of silica glasses. J. Non-Cryst. Solids 196, 210 (1996).
27.DeBast, J., Gilard, P.: Comptes rendus de recherches. Centre Technique et Scientifique de l’Industrie Belge du Verre. 1, 32 (1965).
28.Gy, R., Dufrène, L., Labrot, M.: New insights into the viscoelasticity of glass. J. Non-Cryst. Solids 175, 103 (1994).
29.Rekhson, S.M.: Viscosity and stress relaxation in commercial glasses in the glass transition region. J. Non-Cryst. Solids 38–39, 457 (1980).
30.Rouxel, T., Sangleboeuf, J.C.: The brittle to ductile transition in a soda–lime–silica glass. J. Non-Cryst. Solids 271, 224 (2000).
31.Shen, J.W., Green, D.J., Tressler, R.E., Shelleman, D.L.: Stress relaxation of a soda lime silicate glass below the glass transition temperature. J. Non-Cryst. Solids 324, 277 (2003).

Keywords

Viscoelastic behavior of a soda-lime-silica glass in the 293–833 K range by micro-indentation

  • Haixia Shang (a1), Tanguy Rouxel (a1), Marc Buckley (a1) and Cedric Bernard (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed