Skip to main content Accessibility help

Vertically aligned carbon nanotube-based electrodes for hydrogen production by water electrolysis

  • Xiaozhi Wang (a1), Hang Zhou (a2), Peng Li (a3) and Wenmiao Shu (a4)


Multiwalled carbon nanotubes (MWNTs), due to their unique electrical conductivity and mechanical properties, have led to our interest in their application of water splitting process. This carbon nanotube-based electrode, synthesized by plasma ehanced chemical vapor deposition (PECVD), provides a ∼6 times enhancement of hydrogen production via water electrolysis compared to a graphite electrode in acidic electrolyte. Our PECVD-grown vertically aligned carbon nanotubes show good adhesion to the graphite substrate and long-term sustainability in a strong acid solution without the need for any complicated and expensive pretreatment. Furthermore, the neutral potassium phosphate solution electrolyte (KPi electrolyte) using cobalt salt as the catalyst, as was reported recently, has been used to demonstrate the long-term compatibility of the MWNTs electrode under different electrolyte. MWNTs from thermal chemical vapor deposition growth technique were also fabricated and compared with the PECVD-grown samples.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Kato, T., Kubota, M., Kobayashi, N., and Suzuoki, Y.: Effective utilization of by-product oxygen from electrolysis hydrogen production. Energy 30, 25802595 (2005).
2.Miles, M.H. and Thomason, M.A.: Periodic variations of overvoltages for water electrolysis in acid solutions from cyclic voltammetric studies. J. Electrochemical Soc. 123(10), 14591461 (1976).
3.Kreuter, W. and Hofmann, H.: Electrolysis: The important energy transformer in a world of sustainable energy. Int. J. Hydrogen Energy 23(8), 661666 (1998).
4.Zeng, K. and Zhang, D.: Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307326 (2010).
5.Seehra, M.S. and Bollineni, S.: Nanocarbon boosts energy-efficient hydrogen production in carbon-assisted water electrolysis. Int. J. Hydrogen Energy 34, 60786084 (2009).
6.Misra, A., Giri, J., and Daraio, C.: Hydrogen evolution on hydrophobic aligned carbon nanotubes arrays. ACS Nano 3(11), 39033908 (2009).
7.Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2. Science 321, 10721075 (2008).
8.Surendranath, Y., Dinca, M., and Nocera, D.G.: Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 131(7), 26152620 (2009).
9.Lima, F.H.B., Lizcano-Valbuena, W.H., Teixeira-Neto, E., Nart, F.C., Gonzalez, E.R., and Ticianelli, E.A.: Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim. Acta 52, 385393 (2006).
10.Antolini, E., Salgado, J.R.C., Giz, M.J., and Gonzalez, E.R.: Effects of geometric and electronic factors on ORR activity of carbon supported Pt–Co electrocatalysts in PEM fuel cells. Int. J. Hydrogen Energy 30, 12131220 (2005).
11.Muller, R.: Electrode for electrolysis of water. U.S. Patent No. 438268, 1982.
12.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y.H., Kim, S.G., Rinzler, A.G., Colbert, D.T., Scuseria, G.E., Tomanek, D., Fischer, J.E., and Smalley, R.E.: Crystalline ropes metallic carbon nanotubes. Science 273, 483487 (1996).
13.Dresselhaus, M.S., Dresselhaus, G., and Avouris, P.: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Heidelberg, Germany, 2001).
14.Frank, S., Poncharal, P., Wang, Z.L., and de Heer, W.A.: Carbon nanotube quantum resistors. Science 280, 17441746 (1998).
15.Schonenberger, C., Bachtold, A., Strunk, C., and Forro, L.: Interference and interactions in multiwall nanotubes. Appl. Phys. A 69, 283295 (1999).
16.Xu, T., Wang, Z., Miao, J., Chen, X., and Tan, C.M.: Aligned carbon nanotubes for through-wafer. Appl. Phys. Lett. 91, 042108 (2007).
17.Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.S., and Kim, J.M.: Fully sealed, high-brightness carbon-nanotube field-emission display. Appl. Phys. Lett. 75, 3129 (1999).
18.Wang, Q.H., Corrigan, T.D., Dai, J.Y., Chang, R.P.H., and Krauss, A.R.: Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett. 70, 3308 (1997).
19.Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hirala, P., Nathan, A., and Amratunga, G.A.J.: Arrays of parallel connected coaxial multiwall-carbon-nanotube–amorphous-silicon solar cells. Adv. Mater. 21, 39193923 (2009).
20.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., and Dai, H.: Nanotube molecular wires as chemical sensors. Science 287, 622625 (2000).
21.Yoo, E., Nagashima, Y., Yamazaki, T., Matsumoto, T., and Nakamura, J.: Reduction Pt usage fuel cell electrocatalysts using carbon nanotubes non-Pt metals. Polym. Adv. Technol. 17, 540543 (2006).
22.Wang, X., Zhou, H., Li, P., Shu, W., Amaratunga, G.A.J., and Milne, W.I.: A vertically aligned carbon nanotube/fiber based electrode for economic hydrogen production by water electrolysis, in 8th International Vacuum Electron Sources Conference and Nanocarbon (IVESC), 2010, pp. 488499.
23.Chhowalla, M., Teo, K.B.K., Ducati, C., Rupesinghe, N.L., Amaratunga, G.A.J., Ferrari, A.C., Roy, D., Robertson, J., and Milne, W.I.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 (2001).
24.Teo, K.B.K., Lee, S.B., Chhowalla, M., Seme, V., Binh, V.T., Groening, O., Castignolles, M., Loiseau, A., Pirio, G., Legagneux, P., Pribat, D., Hasko, D.G., Ahmed, H., Amaratunga, G.A.J., and Milne, W.I.: Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibers—how uniform do they grow. Nanotechnology 14, 204 (2003).
25.Meyyappan, M., Delzeit, L., Cassell, A., and Hash, D.: Carbon nanotube growth by PECVD: A review. Plasma Sources Sci. Technol. 12(2), 205 (2003).
26.Ren, Z.F., Huang, Z.P., Wang, D.Z., Klemic, J.F., and Reed, M.A.: Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys. Lett. 75, 1086 (1999).
27.Lau, K.K.S., Bico, J., Teo, K.B.K., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 17011705 (2003).
28.Dubey, P.K., Sinha, A.S.K., Talapatra, S., Koratkar, N., Ajayan, P.M., and Srivastava, O.N.: Hydrogen generation by water electrolysis using carbon nanotube anode. Int. J. Hydrogen Energy 34, 39453950 (2010).
29.Wang, X., Feng, Y., Unalan, H.E., Zhong, G., Li, P., Yu, H., Akinwande, A.I., and Milne, W.I.: The mechanism of the sudden termination of carbon nanotube supergrowth. Carbon 49, 214 (2011).


Related content

Powered by UNSILO

Vertically aligned carbon nanotube-based electrodes for hydrogen production by water electrolysis

  • Xiaozhi Wang (a1), Hang Zhou (a2), Peng Li (a3) and Wenmiao Shu (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.