Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T14:44:06.608Z Has data issue: false hasContentIssue false

Utility of dodecyl sulfate surfactants as dissolution inhibitors in chemical mechanical planarization of copper

Published online by Cambridge University Press:  01 December 2005

Y. Hong
Affiliation:
Interdisciplinary Engineering Science, Clarkson University, Potsdam, New York 13699-5665
U.B. Patri
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699-6650
S. Ramakrishnan
Affiliation:
Department of Chemical Engineering, Clarkson University, Potsdam, New York 13699-6650
D. Roy
Affiliation:
Department of Physics, Clarkson University, Potsdam, New York 13699-5820
S.V. Babu*
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5665
*
a)Address all correspondence to this author. e-mail: babu@clarkson.edu A preliminary report appears in Ref. 23.
Get access

Abstract

An important component of the slurries used in chemical mechanical planarization (CMP) is an appropriately chosen corrosion/dissolution inhibitor, which facilitates selective material removal from protrusions while protecting recessed regions of the surface. The present work demonstrates the utility of two environmentally benign anionic surfactants, sodium dodecyl sulfate (SDS) and ammonium dodecyl sulfate (ADS) as dissolution inhibitors. Using a standard slurry (1 wt% glycine with 5 wt% H2O2 at pH = 4.0) typically used for Cu CMP and combining measurements of open circuit potentials and contact angles with those of Cu removal rates, we show that both SDS and ADS suppress chemical dissolution and polish rates of Cu. The dissolution inhibition efficiencies of ADS and SDS measured in these experiments are found to be superior to those of benzotriazole (BTA), a traditional inhibiting agent used for copper CMP.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zantye, P.B., Kumar, A. and Sikdar, A.K.: Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R45, 89 (2004).CrossRefGoogle Scholar
2.Chemical-Mechanical Polishing 2001—Advances and Future Challenges, edited by Babu, S.V., Cadien, K.C., and Yano, H. (Mater. Res. Soc. Symp. Proc. 671, Warrendale, PA, 2001).Google Scholar
3.Steigerwald, J.M., Murarka, S.P. and Gutmann, R.: Chemical Mechanical Planarization of Microelectronic Materials (Wiley, New York, 1997).CrossRefGoogle Scholar
4.Ulman, A.: An Introduction to Ultra thin Organic Films (Academic Press, Boston, MA, 1991).Google Scholar
5.Somasundaran, P. and Krishnakumar, S.: Adsorption of surfactants and polymers at the solid-liquid intetrface. Colloids Surf. 123, 191 (1997).Google Scholar
6.Itano, M., Kezuka, T., Ishii, M., Unemoto, T., Kubo, M. and Ohmi, T.: Minimization of particle contamination during wet processing of Si wafers. J. Electrochem. Soc. 142, 971 (1995).Google Scholar
7.Ohmi, T.: Total room temperature wet cleaning for Si substrate surface. J. Electrochem. Soc. 143, 2957 (1996).CrossRefGoogle Scholar
8.Adler, J.J., Singh, P.K., Patist, A., Rabinovich, Y.I., Shah, D.O. and Moudgil, B.M.: Correlation of particulate dispersion stability with the strength of self-assembled surfactant films. Langmuir 16, 7255 (2000).CrossRefGoogle Scholar
9.Basim, G.B., Vakarelski, I.U. and Moudgil, B.M.: Role of interaction forces in controlling the stability and polishing performance of CMP slurries. J. Colloid Interf. Sci. 263, 506 (2003).CrossRefGoogle ScholarPubMed
10.Palla, B.J. and Shah, D.O.: Stabilization of high ionic strength slurries using surfactant mixtures: molecular factors that determine optimal stability. J. Colloid Interf. Sci. 256, 143 (2002).CrossRefGoogle Scholar
11.Lee, D-W., Kim, N-H. and Chang, E-G.: Effect of nonionic surfactants on the stability of alumina slurry for Cu CMP. Mater. Sci. Eng. B 118, 293 (2005).CrossRefGoogle Scholar
12.Colic, M. and Fuerstenau, D.W.: Influence of the dielectric constant of the media on oxide stability in surfactant solutions. Langmuir 13, 6644 (1997).CrossRefGoogle Scholar
13.Solomon, M.J., Saeki, T., Wan, M., Scales, P.J., Boger, D.V. and Usui, H.: Effect of adsorbed surfactants on the rheology of colloidal zirconia suspensions. Langmuir 15, 20 (1999).CrossRefGoogle Scholar
14.Koopal, L.K., Goloub, T., deKaiser, A. and Sidorova, M.P.: The effect of cationic surfactants on wetting, colloid stability and flotation of silica. Colloids Surf. 151, 15 (1999).Google Scholar
15.Bremmel, K.E., Jameson, G.J. and Biggs, S.: Adsorption of ionic surfactants in particulate systems: Flotation, stability, and interaction forces. Colloids Surf. 146, 75 (1999).CrossRefGoogle Scholar
16.Evanko, C.R., Dzombak, D.A. and Novak, J.W.: Influence of surfactant addition on the stability of concentrated alumina dispersions in water. Colloids Surf. 110, 219 (1996).CrossRefGoogle Scholar
17.Luo, Q., Campbell, D.R. and Babu, S.V.: Stabilization of alumina slurry for chemical-mechanical polishing of copper. Langmuir 12, 3563 (1996).CrossRefGoogle Scholar
18.Barry, J.D., Babel, A. and Campbell, D.R.: CMP consumables in chemical-mechanical polish (C.M.P) for ULSI multilevel interconnection conference (VMIC Proc. 97ISMIC-200P, Tampa, FL, 1997), p. 322.Google Scholar
19.Ma, H., Chen, S., Yin, B., Zhao, S. and Liu, X.: Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions. Corros. Sci. 45, 867 (2003).CrossRefGoogle Scholar
20.Fuchs-Godec, R. and Dolěcek, V.: An effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media. Colloids Surf. A 244, 73 (2004).CrossRefGoogle Scholar
21.Villamil, R.F.V., Corio, P., Rubim, J.C. and Agostinho, S.M.L.: Sodium dodecylsulfate-benzotriazole synergistic effect as an inhibitor of processes on copper | chloric acid interface. J. Electroanal. Chem. 535, 75 (2002).CrossRefGoogle Scholar
22.Villamil, R.F.V., Corio, P., Rubim, J.C. and Agostinho, S.M.L.: Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. J. Electroanal. Chem. 472, 112 (1999).CrossRefGoogle Scholar
23.Hong, Y., Patri, U.B., Ramakrishnan, S. and Babu, S.V.: Novel use of surfactants in chemical copper mechanical polishing (CMP), in Chemical-Mechanical Planarization-Integration, Technology, and Reliability, edited by Kumar, A., Lee, J.A., Obeng, Y.S., Vos, I., and Johns, E.C. (Mater. Res. Soc. Proc. 867, Warrendale, PA, 2005), W1.10, p. 41.Google Scholar
24.Lu, J., Garland, J.E., Pettit, C.M., Babu, S.V. and Ray, D.: Relative roles of H2O2 and glycine in chemical mechanical polishing of copper studied with impedance spectroscopy. D. Roy. J. Electrochem. Soc. 151 G717 (2004).CrossRefGoogle Scholar
25.Li, Y., Hariharaputhiran, M. and Babu, S.V.: Chemical-mechanical polishing of Cu and Ta films using silica abrasives. J. Mater. Res. 16, 867 (2001).CrossRefGoogle Scholar
26.Aksu, S. and Doyle, F.M.: The role of glycine in the chemical mechanical planarization of copper. J. Electrochem. Soc. 149 G352 (2002).CrossRefGoogle Scholar
27.Papapanayiotou, D., Deligianni, H. and Alkire, R.C.: Effect of benzotriazole on the anisotropic electrolytic etching of copper. J. Electrochem. Soc. 145, 3016 (1998).CrossRefGoogle Scholar
28.Fang, B-S., Olson, C.G. and Lynch, D.W.: A photoemission study of benzotriazole on clean copper and cuprous oxide. Surf. Sci. 176, 476 (1986).CrossRefGoogle Scholar
29.Abed, M.A., Saxena, A. and Bohidar, H.B.: Micellization of alpha-olefin sulfonate in aqueous solutions studied by turbidity, dynamic light scattering and viscosity measurements. Colloids Surf. A 233, 181 (2004).CrossRefGoogle Scholar
30.Cifuentes, A., Bernal, J.L. and Diez-Masa, J.C.: Determination of critical micelle concentration values using capillary electrophoresis instrumentation. Anal. Chem. 69, 4271 (1997).CrossRefGoogle Scholar
31.Kolev, V.L., Danov, K.D., Kralchevsky, P.A., Broze, G. and Mehreteab, A.: Comparison of the van der Waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations. Langmuir 18, 9106 (2002).CrossRefGoogle Scholar
32.Sigal, G.B., Mrksich, M. and Whitesides, G.M.: Using surface plasmon resonance spectroscopy to measure the association of detergents with self-assembled monolayers of hexadecanethiolate on gold. Langmuir 13, 2749 (1997).CrossRefGoogle Scholar
33.Burgess, I., Zamlynny, V., Szymanski, G., Lipkowski, J., Majewski, J., Smith, G., Satija, S. and Ivkov, R.: Electrochemical and neutron reflectivity characterization of dodecyl sulfate adsorption and aggregation at the gold-water interface. Langmuir 17, 3355 (2001).CrossRefGoogle Scholar
34.Wolf, S.: Silicon Processing for the ULSI Era (Lattice Press, Sunset Beach, CA, 1995), p. 1.Google Scholar
35.Kang, K-H., Kim, H-U. and Lim, K-H.: Effect of temperature on critical micelle concentration and thermodynamic potentials of micellization of anionic ammonium dodecyl sulfate and cationic octadecyl trimethyl ammonium chloride. Colloids Surf. A 189, 113 (2001).CrossRefGoogle Scholar
36.Luo, Q., Campbell, D.R. and Babu, S.V.: Chemical-mechanical polishing of copper in alkaline media. Thin Solid Films 311, 177 (1997).CrossRefGoogle Scholar
37.West, J.M.: Basic Corrosion and Oxidation (Ellis Horwood, New York, NY, 1986).Google Scholar
38.Assiongbon, K.A., Emery, S.B., Gorantla, V.R.K., Babu, S.V. and Roy, D.: Electrochemical impedance characteristics of Ta/Cu contact regions in polishing slurries used for chemical mechanical planarization of Ta and Cu: Considerations of galvanic corrosion. Corros. Sci. (2005, in press).Google Scholar
39.Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J.J., Li, Y. and Babu, S.V.: Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper. J. Electrochem. Soc. 147, 3820 (2000).CrossRefGoogle Scholar
40.Gorantla, V.R.K., Assiongbon, K.A., Babu, S.V. and Roy, D.: Citric acid as a complexing agent in chemical-mechanical planarization of copper: Investigation of surface reactions using impedance spectroscopy. J. Electrochem. Soc. 152 G404 (2005).CrossRefGoogle Scholar
41.Goonetilleke, P.C. and Roy, D.: Electrochemical-mechanical planarization of copper: Effects of chemical additives on voltage controlled removal of surface layers in electrolytes. Mater. Chem. Phys. 94, 388 (2005).CrossRefGoogle Scholar
42.Bastidas, J.M., Pinilla, P., Cano, E., Polo, J.L. and Miguel, S.: Copper corrosion inhibition by triphenylmethane derivatives in sulphuric acid media. Corros. Sci. 45, 427 (2003).CrossRefGoogle Scholar
43.Hernandez, J., Wrschka, P. and Oehrlein, G.S.: Surface chemistry studies of copper chemical mechanical planarization. J. Electrochem. Soc. 148 G389 (2001).CrossRefGoogle Scholar
44.Fuerstenau, D.W.: Equilibrium and nonequilibrium phenomena associated with the adsorption of ionic surfactants at solid–water interfaces. J. Colloid Interface Sci. 256, 79 (2002).CrossRefGoogle Scholar
45.Lee, E.M. and Koopal, L.K.: Adsorption of cationic and anionic surfactants on metal oxide surfaces: Surface charge adjustment and competition effects. J. Colloid Interface Sci. 177, 478 (1996).CrossRefGoogle Scholar
46.Quist, P-O. and Söderlind, E.: Surfactant adsorption at solid surfaces using 2H-NMR to determine the aggregate shape. J. Colloid Interface Sci. 172, 510 (1995).CrossRefGoogle Scholar
47.Lalitha, A., Ramesh, S. and Rajeswari, S.: Surface protection of copper in acid medium by azoles and surfactants. Electrochim. Acta. 51, 47 (2005).CrossRefGoogle Scholar
48.Jindal, A. and Babu, S.V.: Effect of pH on chemical-mechanical polishing of Cu and Ta. J. Electrochem. Soc. 151 G709 (2004).CrossRefGoogle Scholar
49.Duval, J., Lyklema, J., Kleijn, J.M. and van Leeuwen, H.P.: Amphifunctionally electrified interfaces: Coupling of electronic and ionic surface-charging processes. Langmuir 17, 7573 (2001).CrossRefGoogle Scholar
50.Kosmulski, M. and Rosenholm, J.B.: High ionic strength electrokinetics. Adv. Colloid Interface Sci. 112, 93 (2004).CrossRefGoogle ScholarPubMed
51.Bard, A.J. and Faulkner, L.R.: Electrochemical Methods, Fundamentals and Applications (John Wiley, New York, 1980).Google Scholar
52.Podlovchenko, B.I. and Kolyakdo, E.A.: A correlation between the changes in total charge and open circuit potential of a hydrogen electrode during the adsorption of neutral particles and the formation of adatoms from ions. J. Electroanal. Chem. 506, 11 (2001).CrossRefGoogle Scholar
53.Park, G.A.: The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 65, 177 (1965).CrossRefGoogle Scholar
54.Foresti, M.L., Pezzatini, G. and Innocenti, M.: Electrochemical behaviour of the Cu(110)|water interface. J. Electroanal. Chem. 434, 191 (1997).Google Scholar
55.Lovell, M.A., Walters, M.J. and Roy, D.: Effects of sub-surface oxygen on electrodeposition of cadmium on copper. Electrochim. Acta 43, 2101 (1998).CrossRefGoogle Scholar
56.Gao, R., Hewitt, T.D. and Roy, D.: Stark shift of an interband transition in Cu determined by surface charge measurements. J. Phys. Chem. Solids 54, 685 (1993).CrossRefGoogle Scholar
57.Hewitt, T.D., Gao, R. and Roy, D.: Effects of surface charge on the second harmonic generation from a Cu electrode. Surf. Sci. 291, 233 (1993).CrossRefGoogle Scholar
58.Lukomska, A. and Sobkowski, J.: Potential of zero charge of monocrystalline copper electrodes in perchlorate solutions. J. Electroanal. Chem. 567, 95 (2004).CrossRefGoogle Scholar
59.Koga, O., Matsuo, T., Hoshi, N. and Hori, Y.: Charge displacement adsorption of carbon monoxide on [110] zone copper single crystal electrodes in relation with PZC. Electrochim. Acta 44, 903 (1998).CrossRefGoogle Scholar
60.Chen, P-L., Chen, J-H., Tsai, M-S., Dai, B-T. and Yeh, C-F.: Post-Cu CMP cleaning for colloidal silica abrasive removal. Microelectro. Eng. 75, 352 (2004).CrossRefGoogle Scholar
61.Tulpar, A. and Ducker, W.A.: Surfactant adsorption at solid-aqueous interfaces containing fixed charges: Experiments revealing the role of surface charge density and surface charge regulation. J. Phys. Chem. B 108, 1667 (2004).CrossRefGoogle Scholar
62.Retter, U. and Tchachnikova, M.: On the formation of surface micelles at the metal/electrolyte interface. J. Electroanal. Chem. 550, 201 (2003).CrossRefGoogle Scholar
63.Levchenko, A.A., Argo, B.P., Vidu, R., Talroze, R.V. and Stroeve, P.: Kinetics of sodium dodecyl sulfate adsorption on and desorption from self-assembled monolayers measured by surface plasmon resonance. Langmuir 18, 8464 (2002).Google Scholar
64.Hu, K. and Bard, A.J.: Characterization od adsorption of sodium dodecyl sulfate on charge-regulated substrates by atomic force microscopy force measurements. Langmuir 13, 5418 (1997).CrossRefGoogle Scholar
65.Davis, A.N., III, S.A. Morton, Counce, R.M., DePaoli, D.W. and Hu, M.Z-C.: Ionic strength effects on hexadecane contact angles on a gold-coated glass surface in ionic surfactant solutions. Colloids Surf. A 221, 69 (2003).Google Scholar
66.Turner, S.F., Clarke, S.M., Rennie, A.R., Thirtle, P.N., Cooke, D.J., Li, Z.X. and Thomas, R.K.: Adsorption of sodium dodecyl sulfate to a polystyrene/water interface studied by neutron reflection and attenuated total reflection infrared spectroscopy. Langmuir 15, 1017 (1999).Google Scholar
67.Neirynck, J.M., Yang, G-R., Murarka, S.P. and Gutmann, R.J.: The addition of surfactant to slurry for polymer CMP: Effects on polymer surface, removal rate and underlying Cu. Thin Solid Films 290, 447 (1996).CrossRefGoogle Scholar
68.Bernard, P., Kapsa, Ph., Coudé, T. and Abry, J-C.: Influence of surfactant and salts on chemical mechanical planarisation of copper. Wear 259, 1367 (2005).CrossRefGoogle Scholar