Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T10:52:06.133Z Has data issue: false hasContentIssue false

Ultrasound driven aggregation and surface silanol modification in amorphous silica microspheres

Published online by Cambridge University Press:  31 January 2011

Sivarajan Ramesh
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
Yuri Koltypin
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
Aharon Gedanken
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
Get access

Abstract

Post formed, silica submicrospheres synthesized by Stober's method have been subjected to a high intensity ultrasound radiation (20 kHz, 100 W/cm2) and their size, morphology, and surface silanol structure modified in situ. The processed silica powders have been characterized by a variety of techniques, such as powder x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), BET nitrogen adsorption, and FT-IR spectroscopy. The silica microspheres formed through an irreversible sol-gel transition have been shown to aggregate by the condensation of interparticle silanols to larger particles under the influence of the shock waves emanating from an imploding cavity. The particle size as a function of sonication time passes through a maximum, suggesting the disintegration of the aggregates on longer exposure to ultrasound radiation. The sonication of dried silica microspheres in an inert dispersant decalin also led to the aggregation of microspheres to a lesser degree, suggesting the deactivation of surface silanols. Infrared spectroscopic investigations suggest a disruption of the hydrogen bonded network of surface silanols. The observed morphological changes have been discussed in terms of direct effect of cavitation on well-formed spheres rather than changes in growth mechanism and capture of primary particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ultrasound: Its Chemical, Physical and Biological Effects, edited by Suslick, K. S. (VCH Publishers, New York, Weinheim, 1988).Google Scholar
2.Lye, S. V. and Low, C. M. R., Ultrasound in Synthesis (Springer-Verlag, New York, 1989).Google Scholar
3.Current Trends in Sonochemistry, edited by Price, C. J. (Royal Society of Chemistry, 1992).Google Scholar
4.Greene, A. E., Lannsard, J. P., Luche, J. L., and Petrier, C. J., J. Org. Chem. 49, 931 (1984).CrossRefGoogle Scholar
5.Lindley, J., Mason, T. J., and Lorimer, J. P., Ultrasonics 25, 45 (1987).CrossRefGoogle Scholar
6.Boudjouk, P., in High Energy Processes in Organometallic Chemistry, edited by Suslick, K. S., ACS Symposium Series 333, American Chemical Society, Washington, DC (1987).Google Scholar
7.Price, G. J., Adv. Sonochemistry 1, 231 (1990).Google Scholar
8.Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature 353, 414 (1991).CrossRefGoogle Scholar
9.Bellisent, R., Galli, G., Hyeon, T., Magazu, S., Majolino, D., Miggliardo, P., and Suslick, K. S., Physica Scripta T57, 79 (1995).CrossRefGoogle Scholar
10.Doktycyz, S. J. and Suslick, K. S., Science 247, 1067 (1990).Google Scholar
11.Cao, X., Koltypin, Yu., Kataby, G., Prozorov, R., and Gedanken, A., J. Mater. Res. 10, 2952 (1995).Google Scholar
12. Yu. Koltypin, Katabi, G., Cao, X., Prozorov, R., and Gedanken, A., J. Non-Cryst. Solids 201, 159 (1996).Google Scholar
13.Stober, W., Fink, A., and Bohn, E., J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
14.Iler, R. K., The Chemistry of Silica (Wiley, New York, 1955).Google Scholar
15.Tsuchiya, I., J. Phys. Chem. 86, 4107 (1982).CrossRefGoogle Scholar
16.Klein, L. C., Ann. Rev. Mater. Sci. 15, 227 (1985).CrossRefGoogle Scholar
17.Bogush, G. H., Tracy, M. A., and Zukoskiiv, C. F., J. Non-Cryst. Solids 104, 95 (1988).Google Scholar
18.Philips, A. P., van Bruggen, M. P. B., and Pathmamanoharan, C., Langmuir 10, 92 (1994).Google Scholar
19.Enomoto, N., Maruyama, Shingo, and Nakagawa, Z., J. Mater. Res. 12, 1410 (1997).Google Scholar
20.Lauterborn, W. and Vogel, A., Ann. Rev. Fluid Mech. 16, 223 (1984).Google Scholar
21.Hench, L. L. and West, J. K., Chem. Rev. 90, 33 (1990).Google Scholar
22.Price, G. J., Norris, D. J., and West, P. J., Macromolecules 25, 6447 (1992).Google Scholar
23.Burneau, A., Barres, A., Gallas, J. P., and Lavalley, J. C., Langmuir 6, 1364 (1990).CrossRefGoogle Scholar
24.Phalippou, J., Woignier, T., and Zarcycki, J., in Ultrastructure Processing of Ceramics, Glasses and Composites, edited by Hench, L. L. and Ulrich, D. R. (Wiley, New York, 1984).Google Scholar
25.Hoffman, P. and Knozinger, E., Surf. Sci. 188, 181 (1987).Google Scholar
26.Morrow, B. A. and McFarlan, A. J., Langmuir 7, 1695 (1991).CrossRefGoogle Scholar
27.Kondo, S., Muroya, M., and Fujii, K., Bull. Chem. Soc. Jpn. 47, 553 (1974).CrossRefGoogle Scholar
28.Chuang, I. S. and Maciel, G. E., J. Am. Chem. Soc. 118, 401 (1996).Google Scholar