Skip to main content Accessibility help
×
Home

Ultra-rapid microwave sintering employing thermal instability and resonant absorption

  • Kirill I. Rybakov (a1), Sergei V. Egorov (a1), Anatoly G. Eremeev (a1), Vladislav V. Kholoptsev (a1), Ivan V. Plotnikov (a1) and Andrei A. Sorokin (a1)...

Abstract

Ultra-rapid microwave sintering of ceramics has been recently demonstrated by the authors. In the experiments with oxide ceramic samples carried out in a 24 GHz gyrotron system for microwave processing of materials, full density was achieved in the sintering processes with a duration of the high-temperature stage of one to several minutes and zero hold at the maximum temperature. The implementation of the ultra-rapid microwave sintering processes was made possible due to fast and efficient control over the temperature of the materials and the supplied microwave power. The absorbed microwave power density was typically in the range of 10–100 W/cm3, which is within the same order of magnitude as the power of Joule heat in the DC electric field–assisted flash sintering processes. At this power level, a thermal instability is triggered by the volumetric heating, which results in a drastic enhancement of mass transport. In addition, possibility of ultra-rapid microwave sintering of powder metals has been demonstrated within a model accounting for the effective electromagnetic properties and resonant absorption effects.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: rybakov@appl.sci-nnov.ru

Footnotes

Hide All

This paper has been selected as an Invited Feature Paper.

Footnotes

References

Hide All
1.Tinga, W.R. and Voss, W.A.G.: Microwave Power Engineering (Academic Press, New York, New York, 1968).
2.Berteaud, A.J. and Badot, J.C.: High temperature microwave heating in refractory materials. J. Microwave Power 11, 315 (1976).
3.Osepchuk, J.M.: A history of microwave heating applications. IEEE Trans. Microwave Theory Tech. 32, 1200 (1984).
4.Meek, T.T., Holcombe, C.E., and Dykes, N.: Microwave sintering of some oxide materials using sintering aids. J. Mater. Sci. Lett. 6, 1060 (1987).
5.Johnson, D.L.: Microwave and plasma sintering of ceramics. Ceram. Int. 17, 295 (1991).
6.Sutton, W.H.: Microwave processing of ceramics—An overview. In Microwave Processing of Materials III, Beatty, R.L., Sutton, W.H., and Iskander, M.F., eds.; Materials Research Society Symposium Proceedings, Vol. 269 (Materials Research Society, Pittsburgh, Pennsylvania, 1994); p. 3.
7.Katz, J.D.: Microwave sintering of ceramics. Annu. Rev. Mater. Sci. 22, 153 (1992).
8.Agrawal, D.K.: Microwave processing of ceramics: A review. Curr. Opin. Solid State Mater. Sci. 3, 480 (1998).
9.Bykov, Y.V., Rybakov, K.I., and Semenov, V.E.: High-temperature microwave processing of materials. J. Phys. D: Appl. Phys. 34, R55 (2001).
10.Binner, J.G.P. and Vaidhyanathan, B.: Microwave sintering of ceramics: What does it offer? Key Eng. Mater. 264–268, 725 (2004).
11.Rybakov, K.I., Olevsky, E.A., and Krikun, E.V.: Microwave sintering—Fundamentals and modeling. J. Am. Ceram. Soc. 96, 1003 (2013).
12.Eastmen, J.A., Sickafus, K.E., Katz, J.D., Boeke, S.G., Blake, R.D., Evans, C.R., Schwarz, R.B., and Liao, Y.X.: Microwave sintering of nanocrystalline TiO2. In Microwave Processing of Materials II, Snyder, W.B. Jr., Sutter, W.H., Iskander, M.F., and Johnson, D.L., eds.; Materials Research Society Symposium Proceedings, Vol. 189 (Materials Research Society, Pittsburgh, Pennsylvania, 1990); p. 273.
13.Freim, J., McKittrick, J., Katz, J., and Sickafus, K.: Microwave sintering of nanocrystalline γ-Al2O3. Nanostruct. Mater. 4, 371 (1994).
14.Bykov, Y., Eremeev, A., Egorov, S., Ivanov, V., Kotov, Y., Khrustov, V., and Sorokin, A.: Sintering of nanostructural titanium oxide using millimeter-wave radiation. Nanostruct. Mater. 12, 115 (1999).
15.Roussy, G. and Mercier, J.: Temperature runaway of microwave heated materials: Study and control. J. Microwave Power 20, 47 (1985).
16.Parris, P.E. and Kenkre, V.M.: Thermal runaway in ceramics arising from the temperature dependence of the thermal conductivity. Phys. Status Solidi B 200, 39 (1997).
17.Kulumbaev, E.B., Semenov, V.E., and Rybakov, K.I.: Stability of microwave heating of ceramic materials in a cylindrical cavity. J. Phys. D: Appl. Phys. 40, 6809 (2007).
18.Spotz, M.S., Skamser, D.J., and Johnson, D.L.: Thermal-stability of ceramic materials in microwave-heating. J. Am. Ceram. Soc. 78, 1041 (1995).
19.Alliouat, M., Lecluse, Y., Massieu, J., and Mazo, L.: Control algorithm for microwave sintering in a resonant system. J. Microwave Power Electromagn. Energy 25, 25 (1990).
20.Beale, G.O., Arteaga, F.J., and Black, W.M.: Design and evaluation of a controller for the process of microwave joining of ceramics. IEEE Trans. Ind. Electron. 39, 301 (1992).
21.Semenov, V.E. and Zharova, N.A.: Thermal runaway and hot spots under controlled microwave heating. In Advances in Microwave and Radio Frequency Processing, Willert-Porada, M., ed. (Springer, Berlin, Germany, 2006); p. 482.
22.Munir, Z.A., Quach, D.V., and Ohyanagi, M.: Electric current activation of sintering: A review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1 (2011).
23.Raj, R., Cologna, M., and Francis, J.S.C.: Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc. 94, 1941 (2011).
24.Guillon, O., Gonzales-Julian, J., Dargatz, B., Kessel, T., Schierning, G., Rathel, J., and Herrmann, M.: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).
25.Olevsky, E.A. and Dudina, D.V.: Field-assisted Sintering: Science and Applications (Springer International Publishing, Berlin/Heidelberg, Germany, 2018).
26.Cologna, M., Rashkova, B., and Raj, R.: Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556 (2010).
27.Dancer, C.E.J.: Flash sintering of ceramic materials. Mater. Res. Express 3, 102001 (2016).
28.Yu, M., Grasso, S., Mckinnon, R., Saunders, T., and Reece, M.J.: Review of flash sintering: Materials, mechanisms and modelling. Adv. Appl. Ceram. 116, 24 (2017).
29.Todd, R.I., Zapata-Solvas, E., Bonilla, R.S., Sneddon, T., and Wilshaw, P.R.: Electrical characteristics of flash sintering: Thermal runaway of Joule heating. J. Eur. Ceram. Soc. 35, 1865 (2015).
30.Rybakov, K.I., Bykov, Y.V., Eremeev, A.G., Egorov, S.V., Kholoptsev, V.V., Sorokin, A.A., and Semenov, V.E.: Microwave ultra-rapid sintering of oxide ceramics. In Processing and Properties of Advanced Ceramics and Composites VII, Mahmoud, M.M., Bhalla, A.S., Bansal, N.P., Singh, J.P., Castro, R., Manjooran, N.J., Pickrell, G., Johnson, S., Brennecka, G., Singh, G., and Zhu, D., eds.; Ceramic Transactions, Vol. 252 (Wiley, Hoboken, New Jersey, 2015); p. 57.
31.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Rybakov, K.I., and Sorokin, A.A.: Flash microwave sintering of transparent Yb:(LaY)2O3 ceramics. J. Am. Ceram. Soc. 98, 3518 (2015).
32.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Sintering of oxide ceramics under rapid microwave heating. In Processing, Properties and Design of Advanced Ceramics and Composites, Singh, G., Bhalla, A., Mahmoud, M.M., Castro, R.H.R., Bansal, N.P., Zhu, D., Singh, J.P., and Wu, Y., eds.; Ceramic Transactions, Vol. 259 (Wiley, Hoboken, New Jersey, 2016); p. 233.
33.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: On the mechanism of microwave flash sintering of ceramics. Materials 9, 684 (2016).
34.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Effect of specific absorbed power on microwave sintering of 3YSZ ceramics. IOP Conf. Ser.: Mater. Sci. Eng. 218, 012001 (2017).
35.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Flash sintering of oxide ceramics under microwave heating. Tech. Phys. 63, 391 (2018).
36.Bykov, Y.V., Eremeev, A.G., Egorov, S.V., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Ultra-rapid microwave sintering. J. Phys.: Conf. Ser. 1115, 042005 (2018).
37.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., Balabanov, S.S., and Belyaev, A.V.: Ultra-rapid microwave sintering of pure and Y2O3-doped MgAl2O4. J. Am. Ceram. Soc. 102, 559 (2019).
38.Trombin, F. and Raj, R.: Developing processing maps for implementing flash sintering into manufacture of whiteware ceramics. Am. Ceram. Soc. Bull. 93, 32 (2014).
39.Sortino, E., Lebrun, J-M., Sansone, A., and Raj, R.: Continuous flash sintering. J. Am. Ceram. Soc. 101, 1432 (2018).
40.Bykov, Y.V., Egorov, S.V., Eremeev, A.G., Kholoptsev, V.V., Plotnikov, I.V., Rybakov, K.I., and Sorokin, A.A.: Additive manufacturing of ceramic products based on millimeter-wave heating. In Abstract Book of the International Conference on High-Performance Ceramics (CICC-11) (Kunming, China, 2019); p. 27.
41.Raj, R.: Analysis of the power density at the onset of flash sintering. J. Am. Ceram. Soc. 99, 3226 (2016).
42.Kremer, F. and Izatt, J.R.: Millimeter-wave absorption measurements in low-loss dielectric using an untuned cavity resonator. Int. J. Infrared Millimeter Waves 2, 675 (1981).
43.Kimrey, H.D. and Janney, M.A.: Design principles for high-frequency microwave cavities. In Microwave Processing of Materials, Sutton, W.H., Brooks, M.H., and Chabinsky, I.J., eds.; Materials Research Society Symposium Proceedings, Vol. 124 (Materials Research Society, Pittsburgh, Pennsylvania, 1988); p. 367.
44.Bykov, Y.V., Eremeev, A.G., Glyavin, M.Y., Denisov, G.G., Kalynova, G.I., Kopelovich, E.A., Luchinin, A.G., Plotnikov, I.V., Proyavin, M.D., Troitskiy, M.M., and Kholoptsev, V.V.: Millimeter-wave gyrotron research system. I. Description of the facility. Radiophys. Quantum Electron. 61, 752 (2019).
45.Jackson, J.D.: Classical Electrodynamics (Wiley, New York, New York, 1962).
46.Narayan, J.: A new mechanism for field-assisted processing and flash sintering of materials. Scr. Mater. 69, 107 (2013).
47.Chaim, R.: Liquid film capillary mechanism for densification of ceramic powders during flash sintering. Materials 9, 280 (2016).
48.Chaim, R.: On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles. Scr. Mater. 158, 88 (2019).
49.Egorov, S.V., Bykov, Y.V., Eremeev, A.G., Plotnikov, I.V., Rybakov, K.I., Sorokin, A.A., and Kholoptsev, V.V.: Optical registration of shrinkage during ultra-rapid microwave sintering. In Proceedings of the International Conference on “Synthesis and Consolidation of Powder Materials” (Torus Press, Moscow, Russia, 2018); p. 277. doi: 10.30826/SCPM2018060 [in Russian].
50.Roy, R., Agrawal, D., Cheng, J., and Gedevanishvili, S.: Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668 (1999).
51.Tinga, W.R., Voss, W.A.G., and Blossey, D.F.: Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44, 3897 (1973).
52.Bruggeman, D.A.G.: Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektriziätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys.–Berlin, Series 5, 24, 636 (1935) [in German].
53.Rybakov, K.I., Semenov, V.E., Egorov, S.V., Eremeev, A.G., Plotnikov, I.V., and Bykov, Y.V.: Microwave heating of conductive powder materials. J. Appl. Phys. 99, 023506 (2006).
54.Rybakov, K.I. and Semenov, V.E.: Effective microwave dielectric properties of ensembles of spherical metal particles. IEEE Trans. Microwave Theory Tech. 65, 1479 (2017).
55.Volkovskaya, I.I., Semenov, V.E., and Rybakov, K.I.: Effective high-frequency permeability of compacted metal powders. Radiophys. Quantum Electron. 60, 797 (2018).
56.Sueyoshi, H., Hashiguchi, T., Nakatsuru, N., and Kakiuchi, S.: Effect of surface oxide film and atmosphere on microwave heating of compacted copper powder. Mater. Chem. Phys. 125, 723 (2011).
57.Mahmoud, M.M., Link, G., and Thumm, M.: The role of the native oxide shell on the microwave sintering of copper metal powder compacts. J. Alloys Compd. 627, 231 (2015).
58.Rybakov, K.I. and Buyanova, M.N.: Microwave resonant sintering of powder metals. Scr. Mater. 149, 108 (2018).
59.Manière, C., Lee, G., Zahrah, T., and Olevsky, E.A.: Microwave flash sintering of metal powders: From experimental evidence to multiphysics simulation. Acta Mater. 147, 24 (2018).
60.Mie, G.: Beitrage zur optik trüber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 330, 377 (1908) [in German].
61.Su, H. and Johnson, D.L.: Master sintering curve: A practical approach to sintering. J. Am. Ceram. Soc. 79, 3211 (1996).
62.Rybakov, K.I. and Volkovskaya, I.I.: Electromagnetic field effects in the microwave sintering of electrically conductive powders. Ceram. Int. 45, 9567 (2019).
63.Bykov, Y., Eremeev, A., Glyavin, M., Kholoptsev, V., Luchinin, A., Plotnikov, I., Denisov, G., Bogdashev, A., Kalynova, G., Semenov, V., and Zharova, N.: 24–84-GHz gyrotron systems for technological microwave applications. IEEE Trans. Plasma Sci. 32, 67 (2004).
64.Esposito, L., Piancastelli, A., Bykov, Y., Egorov, S., and Eremeev, A.: Microwave sintering of Yb:YAG transparent laser ceramics. Opt. Mater. 35, 761 (2013).
65.Balabanov, S.S., Gavrishchuk, E.M., Kut’in, A.M., and Permin, D.A.: Self-propagating high-temperature synthesis of Y2O3 powders from Y(NO3)3x(CH3COO)3(1−x)·nH2O. Inorg. Mater. 47, 484 (2011).
66.Robertson, I.M. and Schaffer, G.B.: Some effects of particle size on the sintering of titanium and a master sintering curve model. Metall. Mater. Trans. A 40, 1968 (2009).

Keywords

Related content

Powered by UNSILO

Ultra-rapid microwave sintering employing thermal instability and resonant absorption

  • Kirill I. Rybakov (a1), Sergei V. Egorov (a1), Anatoly G. Eremeev (a1), Vladislav V. Kholoptsev (a1), Ivan V. Plotnikov (a1) and Andrei A. Sorokin (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.