Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T16:19:02.065Z Has data issue: false hasContentIssue false

Type-II WS2–ReSe2 heterostructure and its charge-transfer properties

Published online by Cambridge University Press:  16 December 2019

Xiuxiu Han
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Dawei He
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Lu Zhang
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Shengcai Hao
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Shuangyan Liu
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Jialu Fu
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Qing Miao
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Jiaqi He
Affiliation:
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing100029, China
Yongsheng Wang*
Affiliation:
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing100044, China
Hui Zhao*
Affiliation:
Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas66045, USA
*
a)Address all correspondence to these authors. e-mail: yshwang@bjtu.edu.cn
b)e-mail: huizhao@ku.edu
Get access

Abstract

We fabricated a van der Waals heterostructure of WS2–ReSe2 and studied its charge-transfer properties. Monolayers of WS2 and ReSe2 were obtained by mechanical exfoliation and chemical vapor deposition, respectively. The heterostructure sample was fabricated by transferring the WS2 monolayer on top of ReSe2 by a dry transfer process. Photoluminescence quenching was observed in the heterostructure, indicating efficient interlayer charge transfer. Transient absorption measurements show that holes can efficiently transfer from WS2 to ReSe2 on an ultrafast timescale. Meanwhile, electron transfer from ReSe2 to WS2 was also observed. The charge-transfer properties show that monolayers of ReSe2 and WS2 form a type-II band alignment, instead of type-I as predicted by theory. The type-II alignment is further confirmed by the observation of extended photocarrier lifetimes in the heterostructure. These results provide useful information for developing van der Waals heterostructure involving ReSe2 for novel electronic and optoelectronic applications and introduce ReSe2 to the family of two-dimensional materials to construct van der Waals heterostructures.

Type
Article
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666669 (2004).CrossRefGoogle ScholarPubMed
Liao, L., Lin, Y-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., and Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305308 (2010).CrossRefGoogle ScholarPubMed
Mak, K.F., McGill, K.L., Park, J., and McEuen, P.L.: The valley Hall effect in MoS2 transistors. Science 344, 14891492 (2014).CrossRefGoogle Scholar
Sherson, J.F., Krauter, H., Olsson, R.K., Julsgaard, B., Hammerer, K., Cirac, I., and Polzik, E.S.: Quantum teleportation between light and matter. Nature 443, 557560 (2006).CrossRefGoogle ScholarPubMed
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699712 (2012).CrossRefGoogle ScholarPubMed
Xu, M., Liang, L., Shi, M., and Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 37663798 (2013).CrossRefGoogle ScholarPubMed
Yuan, H., Wang, X., Lian, B., Zhang, H., Fang, X., Shen, B., Xu, G., Xu, Y., Zhang, S-C., Hwang, H.Y., and Cui, Y.: Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. Nat. Nanotechnol. 9, 851857 (2014).CrossRefGoogle ScholarPubMed
Yoffe, A.D.: Low-dimensional systems: Quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems. Adv. Phys. 42, 173262 (1993).CrossRefGoogle Scholar
Tsai, M-L., Su, S-H., Chang, J-K., Tsai, D-S., Chen, C-H., Wu, C-I., Li, L-J., Chen, L-J., and He, J-H.: Monolayer MoS2 heterojunction solar cells. ACS Nano 8, 83178322 (2014).CrossRefGoogle ScholarPubMed
Yun, J-M., Noh, Y-J., Lee, C-H., Na, S-I., Lee, S., Jo, S.M., Joh, H-I., and Kim, D-Y.: Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells. Small 10, 23192324 (2014).CrossRefGoogle Scholar
Gourmelon, E., Lignier, O., Hadouda, H., Couturier, G., Bernede, J.C., Tedd, J., Pouzet, J., and Salardenne, J.: MS2 (M = W, Mo) photosensitive thin films for solar cells. Sol. Energy Mater. Sol. Cells 46, 115121 (1997).CrossRefGoogle Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 7480 (2011).CrossRefGoogle ScholarPubMed
Cui, S., Pu, H., Wells, S.A., Wen, Z., Mao, S., Chang, J., Hersam, M.C., and Chen, J.: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun. 6, 8632 (2015).CrossRefGoogle ScholarPubMed
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A., and Kis, A.: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8, 497501 (2013).CrossRefGoogle ScholarPubMed
Radisavljevic, B., Whitewich, M.B., and Kis, A.: Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 99349938 (2011).CrossRefGoogle ScholarPubMed
Baugher, B.W.H., Churchill, H.O.H., Yang, Y., and Jarillo-Herrero, P.: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262267 (2014).CrossRefGoogle Scholar
Cheng, R., Jiang, S., Chen, Y., Liu, Y., Weiss, N., Cheng, H-C., Wu, H., Huang, Y., and Duan, X.: Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).CrossRefGoogle ScholarPubMed
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419425 (2013).CrossRefGoogle ScholarPubMed
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., and Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850855 (2013).CrossRefGoogle Scholar
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., and Chhowalla, M.: Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 8, 100103 (2013).Google Scholar
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W., and Ajayan, P.M.: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 11351142 (2014).CrossRefGoogle ScholarPubMed
Lamfers, H.J., Meetsma, A., Wiegers, G.A., and de Boer, J.L.: The crystal structure of some rhenium and technetium dichalcogenides. J. Alloys Compd. 241, 3439 (1996).CrossRefGoogle Scholar
Alcock, N.W. and Kjekshus, A.: The crystal structure of ReSe2. Acta Chem. Scand. 19, 7994 (1965).CrossRefGoogle Scholar
Yang, S., Tongay, S., Yue, Q., Li, Y., Li, B., and Lu, F.: High-performance few-layer Mo-doped ReSe2 nanosheet photodetectors. Sci. Rep. 4, 5442 (2014).CrossRefGoogle ScholarPubMed
Wang, X., Huang, L., Peng, Y., Huo, N., Wu, K., Xia, C., Wei, Z., Tongay, S., and Li, J.: Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions. Nano Res. 9, 507516 (2015).CrossRefGoogle Scholar
Zhang, E., Wang, P., Li, Z., Wang, H., Song, C., Huang, C., Chen, Z-G., Yang, L., Zhang, K., Lu, S., Wang, W., Liu, S., Fang, H., Zhou, X., Yan, H., Zou, J., Wan, X., Zhou, P., Hu, W., and Xiu, F.: Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 10, 80678077 (2016).CrossRefGoogle ScholarPubMed
Yang, S., Tongay, S., Li, Y., Yue, Q., Xia, J-B., Li, S-S., Li, J., and Wei, S-H.: Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 72267231 (2014).CrossRefGoogle ScholarPubMed
Corbet, C.M., Sonde, S.S., Tutuc, E., and Banerjee, S.K.: Improved contact resistance in ReSe2 thin film field-effect transistors. Appl. Phys. Lett. 108, 162104 (2016).CrossRefGoogle Scholar
Leicht, G., Berger, H., and Levy, F.: The growth of n-and p-type ReS2 and ReSe2 single crystals and their electrical properties. Solid State Commun. 61, 531534 (1987).CrossRefGoogle Scholar
Huang, Y.S., Ho, C.H., Liao, P.C., and Tiong, K.K.: Temperature dependent study of the band edge excitons of ReS2 and ReSe2. J. Alloys Compd. 262, 9296 (1997).CrossRefGoogle Scholar
Jiang, S., Hong, M., Wei, W., Zhao, L., Zhang, N., Zhang, Z., Yang, P., Gao, N., Zhou, X., Xie, C., Shi, J., Huan, Y., Tong, L., Zhao, J., Zhang, Q., Fu, Q., and Zhang, Y.: Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 1, 17 (2018).CrossRefGoogle Scholar
Cui, F., Li, X., Feng, Q., Yin, J., Zhou, L., Liu, D., Liu, K., He, X., Liang, X., Liu, S., Lei, Z., Liu, Z., Peng, H., Zhang, J., Kong, J., and Xu, H.: Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 10, 27322742 (2017).CrossRefGoogle Scholar
Ho, C.H., Liao, P.C., and Huang, Y.S.: Optical absorption of ReS2 and ReSe2 single crystals. J. Appl. Phys. 81, 63806383 (1997).CrossRefGoogle Scholar
Tiong, K.K., Ho, C.H., and Huang, Y.S.: The electrical transport properties of ReS2 and ReSe2 layered crystals. Solid State Commun. 111, 635640 (1999).CrossRefGoogle Scholar
Bellus, M.Z., Li, M., Lane, S.D., Ceballos, F., Cui, Q., Zeng, X-C., and Zhao, H.: Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. Nanoscale Horiz. 2, 3136 (2017).CrossRefGoogle Scholar
Li, M., Bellus, M.Z., Dai, J., Ma, L., Li, X., Zhao, H., and Zeng, X-C.: A type-I van der Waals heterobilayer of WSe2/MoTe2. Nanotechnology 29, 335203 (2018).CrossRefGoogle Scholar
Hong, X., Kim, J., Shi, S.F., Zhang, Y., Jin, C., Sun, Y., Tongay, S., Wu, J., Zhang, Y., and Wang, F.: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682686 (2014).CrossRefGoogle Scholar
Ceballos, F., Bellus, M.Z., Chiu, H-Y., and Zhao, H.: Ultrafast Charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 1271712724 (2014).CrossRefGoogle Scholar
Özçelik, V.O., Azadani, J.G., Yang, C., Koester, S.J., and Low, T.: Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2016).CrossRefGoogle Scholar
Cui, Q., Li, Y., Chang, J., Zhao, H., and Xu, C.: Temporally resolving synchronous degenerate and nondegenerate two-photon absorption in 2D semiconducting monolayers. Laser Photonics Rev. 13, 1800225 (2019).CrossRefGoogle Scholar
Wang, R., Ruzicka, B.A., Kumar, N., Bellus, M.Z., Chiu, H-Y., and Zhao, H.: Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide. Phys. Rev. B 86, 045406 (2012).CrossRefGoogle Scholar
Ceballos, F. and Zhao, H.: Ultrafast laser spectroscopy of two-dimensional materials beyond graphene. Adv. Funct. Mater. 27, 1604509 (2017).CrossRefGoogle Scholar