Skip to main content Accessibility help

Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition

  • Niraj Bhattarai (a1), Andrew W. Forbes (a1), Rajendra P. Dulal (a2), Ian L. Pegg (a1) and John Philip (a1)...


Theoretical calculations and experimental observations show MoTe2 is a type II Weyl semimetal, along with many members of transition metal dichalcogenides family. We have grown highly crystalline large-area MoTe2 thin films on Si/SiO2 substrates by chemical vapor deposition. Very uniform, continuous, and smooth films were obtained as confirmed by scanning electron microscopy and atomic force microscopy analyses. Measurements of the temperature dependence of longitudinal resistivity and current–voltage characteristics at different temperature are discussed. Unsaturated, positive quadratic magnetoresistance of the as-grown thin films has been observed from 10 to 200 K. Hall resistivity measurements confirm the majority charge carriers are hole.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Dawson, W.G. and Bullett, D.W.: Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C: Solid State Phys. 20, 6159 (1987).
2.Yanpeng, Q., Naumov, P.G., Ali, M.N., Rajamathi, C.R., Schnelle, W., Barkalov, O., Hanfland, M., Wu, S-C., Shekher, C., Sun, Y., Süß, V., Schmidt, M., Schwarz, U., Pippel, E., Werner, P., Hillebrand, R., Forster, T., Kampert, E., Parkin, S., Cava, R.J., Felser, C., Yan, B., and Medvedev, S.A.: Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).
3.Naylor, C.H., Parkin, W.M., Ping, J., Gao, Z., Zhou, Y.R., Kim, Y., Streller, F., Carpick, R.W., Rappe, A.M., Drndić, M., Kikkawa, J.M., and Johnson, A.T.C.: Monolayer single-crystal 1T′-MoTe2 grown by chemical vapor deposition exhibits weak antilocalization effect. Nano Lett. 16, 4297 (2016).
4.Xu, X., Yao, W., Xiao, D., and Heniz, T.F.: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343 (2014).
5.Zhou, L., Xu, K., Zubair, A., Zhang, X., Ouyang, F., Palacios, T., Dresselhaus, M.S., Li, Y., and Kong, J.: Role of molecular sieves in the CVD synthesis of large-area 2D MoTe2. Adv. Funct. Mater. 27, 1603491 (2017).
6.Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N.: Liquid exfoliation of layered materials. Science 340, 1226419 (2013).
7.Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O.V., and Kis, A.: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).
8.Noh, S.H., Hwang, J., Kang, J., Seo, M.H., Choi, D., and Han, B.: Tuning the catalytic activity of heterogeneous two-dimensional transition metal dichalcogenides for hydrogen evolution. J. Mater. Chem. A 6, 20005 (2018).
9.Tan, C. and Zhang, H.: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713 (2015).
10.Huang, X., Zeng, Z., and Zhang, H.: Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 42, 1934 (2013).
11.Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 74 (2011).
12.Huang, X., Zeng, Z., Bao, S., Wang, M., Qi, X., Fan, Z., and Zhang, H.: Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).
13.Zhou, Q., Rhodes, D., Zhang, Q.R., Tang, S., Schönemann, R., and Balicas, L.: Hall effect within the colossal magnetoresistive semimetallic state of MoTe2. Phys. Rev. B 94, 121101 (2016).
14.Qian, X., Liu, J., Fu, L., and Li, J.: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344 (2014).
15.Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Nanostructures of type-II topological Dirac semimetal NiTe2. J. Vac. Sci. Technol., B 37, 042903 (2019).
16.Song, S., Keum, D.H., Cho, S., Perello, D., Kim, Y., and Lee, Y.H.: Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188 (2015).
17.Revolinsky, E. and Beerntsen, D.J.: Electrical properties of α- and β-MoTe2 as affected by stoichiometry and preparation temperature. J. Phys. Chem. Solids 27, 523 (1966).
18.Empante, T.A., Zhou, Y., Klee, V., Nguyen, A.E., Lu, I-H., Valentin, M.D., Alvillar, S.A.N., Preciado, E., Berges, A.J., Merida, C.S., Gomez, M., Bobek, S., Isarraraz, M., Reed, E.J., and Bartels, L.: Chemical vapor deposition growth of few-layer MoTe2 in the 2H, 1T′, and 1T phases: Tunable properties of MoTe2 films. ACS Nano 11, 905 (2017).
19.Deng, K., Wan, G., Deng, P., Zhang, K., Ding, S., Wang, E., Yan, M., Huang, H., Zhang, H., Xu, Z., Denlinger, J., Fedorov, A., Yang, H., Duan, W., Yao, H., Wu, Y., Fan, S., Zhang, H., Chen, X., and Zhou, S.: Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105 (2016).
20.Zandt, T., Dwelk, H., Janowitz, C., and Manzke, R.: Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2. J. Alloys Compd. 442, 216 (2007).
21.Luo, X., Chen, F.C., Zhang, J.L., Pei, Q.L., Lin, G.T., Lu, W.J., Han, Y.Y., Xi, C.Y., Song, W.H., and Sun, Y.P.: Td-MoTe2: A possible topological superconductor. Appl. Phys. Lett. 109, 102601 (2016).
22.Soluyanov, A.A., Gresch, D., Wang, Z., Wu, Q.S., Troyer, M., Dai, X., and Bernevig, B.A.: Type-II Weyl semimetals. Nature 527, 495 (2015).
23.Dulal, R.P., Dahal, B.R., Forbes, A., Bhattarai, N., Pegg, I.L., and Philip, J.: Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co2TiGe. Sci. Rep. 9, 3342 (2019).
24.Huang, X., Zhao, L., Long, Y., Wang, P., Chen, D., Yang, Z., Liang, H., Xue, M., Weng, H., Fang, Z., Dai, X., and Chen, G.: Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).
25.Xu, G., Weng, H., Wang, Z., Dai, X., and Fang, Z.: Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).
26.Wan, Z., Turner, A.M., Vishwanath, A., and Savrasov, S.Y.: Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).
27.Parameswaran, S.A., Grover, T., Abanin, D.A., Pesin, D.A., and Vishwanath, A.: Probing the chiral anomaly with nonlocal transport in three-dimensional topological semimetals. Phys. Rev. X 4, 031035 (2014).
28.Keum, D.H., Cho, S., Kim, J.H., Choe, D.H., Sung, H.J., Kan, M., Kang, H., Hwang, J.Y., Kim, S.W., Yang, H., Chang, K.J., and Lee, Y.H.: Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482 (2015).
29.Sun, Y., Wu, S-C., Ali, M.N., Felser, C., and Yan, B.: Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).
30.Wang, Z., Gresch, D., Soluyanov, A.A., Xei, W., Kushwaha, S., Dai, X., Troyer, M., Cava, R.J., and Bernevig, B.A.: MoTe2: A type-II weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016).
31.Huang, L., McCormick, T.M., Ochi, M., Zhao, Z., Suzuki, M-T., Arita, R., Wu, Y., Mou, D., Cao, H., Yan, J., Trivedi, N., and Kaminski, A.: Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. Nat. Mater. 15, 1155 (2016).
32.Jiang, J., Liu, Z.K., Sun, Y., Yang, H.F., Rajamathi, C.R., Qi, Y.P., Yang, L.X., Chen, C., Peng, H., Hwang, C-C., Sun, S.Z., Mo, S-K., Vobornik, I., Fujii, J., Parkin, S.S.P., Felser, C., Yan, B.H., and Chen, Y.L.: Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8, 13973 (2017).
33.Liang, A., Huang, J., Nie, S., Ding, Y., Gao, Q., Hu, C., He, S., Zhang, Y., Wang, C., Shen, B., Liu, J., Ai, P., Yu, L., Sun, X., Zhao, W., Lv, S., Liu, D., Li, C., Zhang, Y., Hu, Y., Xu, Y., Zhao, L., Liu, G., Mao, Z., Jia, X., Zhang, F., Zhang, S., Yang, F., Wang, Z., Peng, Q., Weng, H., Dai, X., Fang, Z., Xu, Z., Chen, C., and Zhou, X.J.: Electronic evidence for type II Weyl semimetal state in MoTe2. arXiv preprint arXiv:1604.01706 (2016).
34.Zhou, L., Xu, K., Zubair, A., Liao, A.D., Fang, W., Ouyang, F., Lee, Y.H., Ueno, K., Saito, R., Palaciios, T., Kong, J., and Dresselhaus, M.S.: Large-area synthesis of high-quality uniform few-layer MoTe2. J. Am. Chem. Soc. 137, 11892 (2015).
35.Zhou, J., Liu, F., Lin, J., Huang, X., Xia, J., Zhang, B., Zheng, Q., Wang, H., Zhu, C., Niu, L., Wang, X., Fu, W., Yu, P., Chang, T-R., Hsu, C-H., Wu, D., Jeng, H-T., Huang, Y., Lin, H., Shen, Z., Yang, C., Lu, L., Suenaga, K., Zhou, W., Pantelides, S.T., Liu, G., and Liu, Z.: Large-area and high-quality 2D transition metal telluride. Adv. Mater. 29, 1603471 (2017).
36.Brown, B.E.: The crystal structures of WTe2 and high-temperature MoTe2. Acta Crystallogr. 20, 268 (1966).
37.Shin, D., Lee, Y., Sasaki, M., Jeong, Y.H., Weickert, F., Betts, J.B., Kim, H.J., Kim, K.S., and Kim, J.: Violation of Ohm’s law in a Weyl metal. Nat. Mater. 16, 1096 (2017).
38.Chen, F.C., Lv, H.Y., Luo, X., Lu, W.J., Pei, Q.L., Lim, G.T., Han, Y.Y., Zhu, X.B., Song, W.H., and Sun, Y.P.: Extremely large magnetoresistance in the type-II Weyl semimetal Mo Te2. Phys. Rev. B 94, 235154 (2016).
39.Ali, M.N., Xiong, J., Flynn, S., Tao, J., Gibson, Q.D., Schoop, L.M., Liang, T., Haldolaarachchige, N., Harschberger, M., Ong, N.P., and Cava, J.: Large, non-saturating magnetoresistance in WTe2. Nature 514, 205 (2014).
40.Yang, L.X., Liu, Z.K., Sun, Y., Peng, H., Yang, H.F., Zhang, T., Zhou, B., Zhang, Y., Guo, Y.F., Rahn, M., Prabhakaran, D., Hussain, Z., Mo, S.K., Felser, C., Yan, B., and Chen, Y.L.: Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728 (2015).
41.Xu, C., Li, B., Jiao, W., Zhou, W., Qian, B., Sankar, R., Zhigadlo, N.D., Qi, Y., Qian, D., Chou, F.C., and Xu, X.: Topological type-II Dirac fermions approaching the Fermi level in a transition metal dichalcogenide NiTe2. Chem. Mater. 30, 4823 (2018).
42.Liang, D.D., Wang, Y.J., Zhen, W.L., Yang, J., Weng, S.R., Yan, X., Han, Y.Y., Tong, W., Zhu, W.K., Pi, L., and Zhang, C.J.: Origin of planar Hall effect in type-II Weyl semimetal MoTe2. AIP Adv. 9, 055015 (2019).
43.Gong, J-X., Yang, J., Ge, M., Wang, Y-J., Liang, D-D., Luo, L., Yan, X., Zhen, W-L., Weng, S-R., Pi, L., Zhang, C-J., and Zhu, W-K.: Non-stoichiometry effects on the extreme magnetoresistance in Weyl semimetal WTe2. Chin. Phys. Lett. 35, 097101 (2018).
44.Forbes, A.W., Dulal, R.P., Bhattarai, N., Pegg, I.L., and Philip, J.: Experimental realization and magnetotransport properties of half-metallic Fe2Si. J. Appl. Phys. 125, 243902 (2019).
45.Bestwick, A.J., Fox, E.J., Kou, X., Pan, L., Wang, K.L., and Goldhaber-Gordon, D.: Precise quantization of the anomalous Hall effect near zero magnetic field. Phys. Rev. Lett. 114, 187201 (2015).
46.Chang, C-Z., Zhang, J., Feng, X., Shen, J., Zhang, Z., Guo, M., Li, K., Ou, Y., Wei, P., Wang, L-L., Ji, Z-Q., Feng, Y., Ji, S., Chen, X., Jia, J., Dai, X., Fang, Z., Zhang, S-C., He, K., Wang, Y., Lu, L., Ma, X-C., and Xue, Q-K.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167 (2013).


Transport characteristics of type II Weyl semimetal MoTe2 thin films grown by chemical vapor deposition

  • Niraj Bhattarai (a1), Andrew W. Forbes (a1), Rajendra P. Dulal (a2), Ian L. Pegg (a1) and John Philip (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed