Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T12:41:51.456Z Has data issue: false hasContentIssue false

Transparent electrodes made from carbon nanotube polyelectrolytes and application to acidic environments

Published online by Cambridge University Press:  23 June 2015

Amélie Catheline
Affiliation:
CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600, Pessac, France; and Université de Bordeaux, CRPP, UPR 8641, F-33600, Pessac, France
Francesco Paolucci
Affiliation:
Dipartimento di Chimica, Università di Bologna, Via Selmi 2, I-40126, Bologna, Italy
Giovanni Valenti
Affiliation:
Dipartimento di Chimica, Università di Bologna, Via Selmi 2, I-40126, Bologna, Italy
Philippe Poulin
Affiliation:
CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600, Pessac, France, Université de Bordeaux, CRPP, UPR 8641, F-33600, Pessac, France
Alain Pénicaud*
Affiliation:
CNRS, Centre de Recherche Paul Pascal (CRPP), UPR 8641, F-33600, Pessac, France, Université de Bordeaux, CRPP, UPR 8641, F-33600, Pessac, France
*
a)Address all correspondence to this author. e-mail: penicaud@crpp-bordeaux.cnrs.fr
Get access

Abstract

Carbon nanotube (CNT)-based transparent conducting films (TCFs) have been prepared by filtration of (i) surfactant-based aqueous dispersions and (ii) organic solutions obtained by reductive dissolution of an alkali metal salt of polyelectrolyte nanotubes. Starting from the same source of nanotubes, it is shown that films obtained by the reductive dissolution route present up to one order of magnitude better conductivity for the same transmittance. Light scattering experiments show that the average CNT length is much larger for the reductive dissolution-based organic solutions than for the sonication aided aqueous dispersions. Values of surface resistivity of 200 ohm per square have been obtained for 80% transmittance. Additionally, it is shown that the CNT-based TCFs are undistinguishable from indium tin oxide (ITO) as electrodes in regular environments, whereas they perform efficiently in acidic environments where ITO fails.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguirre, C.M., Auvray, S., Pigeon, S., Izquierdo, R., Desjardins, P., and Martel, R.: Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl. Phys. Lett. 88, 183104 (2006).CrossRefGoogle Scholar
Artukovic, E., Kaempgen, M., Hecht, D.S., Roth, S., and Grüner, G.: Transparent and flexible carbon nanotube transistors. Nano Lett. 5, 757760 (2005).CrossRefGoogle ScholarPubMed
Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamaras, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F., and Rinzler, A.: Transparent, conductive carbon nanotube films. Science 305, 12731276 (2004).CrossRefGoogle ScholarPubMed
Andrews, R., Jacques, D., Minot, M., and Rantell, T.: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287, 395403 (2002).3.0.CO;2-S>CrossRefGoogle Scholar
Vigolo, B., Penicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., and Poulin, P.: Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290, 13311334 (2000).CrossRefGoogle ScholarPubMed
Viry, L., Mercader, C., Miaudet, P., Zakri, C., Derré, A., Kuhn, A., Maugey, M., and Poulin, P.: Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 220, 34873495 (2010).CrossRefGoogle Scholar
Fukushima, T., Asaka, K., Kosaka, A., and Aida, T.: Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. Engl. 44, 24102413 (2005).CrossRefGoogle ScholarPubMed
Bartholome, C., Derré, A., Roubeau, O., Zakri, C., and Poulin, P.: Electromechanical properties of nanotube–PVA composite actuator bimorphs. Nanotechnology 19, 325501 (2008).CrossRefGoogle ScholarPubMed
Blanchet, G.B., Fincher, C.R., and Gao, F.: Polyaniline nanotube composites: A high-resolution printable conductor. Appl. Phys. Lett. 82, 12901292 (2003).CrossRefGoogle Scholar
Saint-Aubin, K., Poulin, P., Saadaoui, H., Maugey, M., and Zakri, C.: Dispersion and film-forming properties of poly(acrylic acid)-stabilized carbon nanotubes. Langmuir 25, 1320613211 (2009).CrossRefGoogle ScholarPubMed
Shen, K., Curran, S., Xu, H., Rogelj, S., Jiang, Y., Dewald, J., and Pietrass, T.: Single-walled carbon nanotube purification, pelletization, and surfactant-assisted dispersion: A combined TEM and resonant micro-raman spectroscopy study. J. Phys. Chem. B 10, 44554463 (2005).CrossRefGoogle Scholar
Lu, K.L., Lagon, R.M., Chen, Y.K., Green, M.L.H., and Harris, P.J.F.: Mechanical damage of carbon nanotubes by ultrasound. Carbon 34, 814816 (1996).CrossRefGoogle Scholar
Lucas, A., Zakri, C., Maugey, M., Pasquali, M., vd Schoot, P., and Poulin, P.: Kinetics of nanotube and microfiber scission under sonication. J. Phys. Chem. C 113, 2059920605 (2009).CrossRefGoogle Scholar
Pagani, G., Green, M.J., Poulin, P., and Pasquali, M.: Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proc. Natl. Acad. Sci. U. S. A. 109, 1159911604 (2012).CrossRefGoogle ScholarPubMed
Pénicaud, A., Poulin, P., Derré, A., Anglaret, E., and Petit, P.: Spontaneous dissolution of a single-wall carbon nanotube salt. J. Am. Chem. Soc. 127, 89 (2005).CrossRefGoogle ScholarPubMed
Fogden, S., Howard, C., Heenan, R.K., Skipper, N.T., and Shaffer, M.S.P.: Scalable method for the reductive dissolution, purification, and separation of single-walled carbon nanotubes. ACS Nano 6, 5462 (2012).CrossRefGoogle ScholarPubMed
Fogden, S., Kim, K., Ma, C., and McFarlane, G.: Scalable single walled carbon nanotube separation: From process to product. NSTI-Nanotech, Boston, MA, 2011; pp. 163166.Google Scholar
Jiang, C., Saha, A., Xiang, C., Young, C.C., Tour, J.M., Pasquali, M., and Marti, A.A.: Increased solubility, liquid-crystalline phase, and selective functionalization of single-walled carbon nanotube polyelectrolyte dispersions. ACS Nano 7, 45034510 (2013).CrossRefGoogle ScholarPubMed
Vigolo, B., Hérold, C., Marêché, J-F., Bourson, P., Margueron, S., Ghanbaja, J., and McRae, E.: Direct revealing of the occupation sites of heavy alkali metal atoms in single-walled carbon nanotube intercalation compounds. J. Phys. Chem. C 113, 76247628 (2009).CrossRefGoogle Scholar
Petit, P., Mathis, C., Journet, C., and Bernier, P.: Tuning and monitoring the electronic structure of carbon nanotubes. Chem. Phys. Lett. 305, 370374 (1999).CrossRefGoogle Scholar
Voiry, D., Drummond, C., and Penicaud, A.: Portrait of carbon nanotube salts as soluble polyelectrolytes. Soft Matter 7, 7998 (2011).CrossRefGoogle Scholar
Pénicaud, A., Dragin, F., Pécastaings, G., He, M., and Anglaret, E.: Concentrated solutions of individualized single walled carbon nanotubes. Carbon 67, 360367 (2014).CrossRefGoogle Scholar
Senthilkumar, M., Mathiyarasu, J., Joseph, J., Phani, K.L.N., and Yegnaraman, V.: Electrochemical instability of indium tin oxide (ITO) glass in acidic pH range during cathodic polarization. Mater. Chem. Phys. 108, 403407 (2008).CrossRefGoogle Scholar
Lee, K.E., Wang, M., Kim, E.J., and Hahn, S.H.: Structural, electrical and optical properties of sol–gel AZO thin films. Curr. Appl. Phys. 9, 683687 (2009).CrossRefGoogle Scholar
Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Sng, Y.I., Kim, Y-J., Kim, K.S., Özyilmaz, B., Ahn, J-H., Hong, B.H., and Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574578 (2010).CrossRefGoogle ScholarPubMed
Kang, M.G., Kim, M.S., Kim, J., and Guo, L.J.: Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 20, 44084413 (2008).CrossRefGoogle Scholar
Hecht, D.S., Hu, L., and Irvin, G.: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 23, 14821513 (2011).CrossRefGoogle ScholarPubMed
Kumar, A. and Zhou, C.: The race to replace tin-doped indium oxide: Which material will win? ACS Nano 4, 1114 (2010).CrossRefGoogle ScholarPubMed
Minami, T. and Miyata, T.: Present status and future prospects for development of non- or reduced-indium transparent conducting oxide thin films. Thin Solid Films 517, 14741477 (2008).CrossRefGoogle Scholar
Zhou, Y., Hu, L., and Grüner, G.: A method of printing carbon nanotube thin films. Appl. Phys. Lett. 88, 12 (2006).CrossRefGoogle Scholar
Dan, B., Irvin, G.C., and Pasquali, M.: Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3, 835843 (2009).CrossRefGoogle ScholarPubMed
Lima, M.D., de Andrade, M.J., Bergmann, C.P., and Roth, S.: Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition. J. Mater. Chem. 18, 776779 (2008).CrossRefGoogle Scholar
Song, Y.I., Yang, C.M., Kim, D.Y., Kanoh, H., and Kaneko, K.: Flexible transparent conducting single-wall carbon nanotube film with network bridging method. J. Colloid Interface Sci. 318, 365371 (2008).CrossRefGoogle ScholarPubMed
Pint, C.L., Xu, Y.Q., Pasquali, M., and Hauge, R.H.: Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets. ACS Nano 2, 18711878 (2008).CrossRefGoogle ScholarPubMed
Mirri, F., Ma, A.W.K., Hsu, T.T., Behabtu, N., Eichmann, S.L., Young, C.C., Tsentalovich, D.E., and Pasquali, M.: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6, 97379744 (2012).CrossRefGoogle ScholarPubMed
Badaire, S., Poulin, P., Maugey, M., and Zakri, C.: In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20, 1036710370 (2004).CrossRefGoogle ScholarPubMed
Shetty, A.M., Wilkins, G.M.H., Nanda, J., and Solomon, M.J.: Multiangle depolarized dynamic light scattering of short functionalized single-walled carbon nanotubes. J. Phys. Chem. C 113, 7129 (2009).CrossRefGoogle Scholar
Pénicaud, A., Petit, P., and Fischer, J.E.: Doped carbon nanotubes. In Carbon Meta-Nanotubes: Synthesis, Properties and Applications, Monthioux, M. ed. (John Wiley & Sons, Hoboken, NJ, 2012); pp. 41, 111.Google Scholar
Khoerunnisa, F., Morelos-Gomez, A., Tanaka, H., Fujimori, T., Minami, D., Kukobat, R., Hayashi, T., Hong, S.Y., Choi, Y.C., Miyahara, M., Terrones, M., Endo, M., and Kaneko, K.: Metal–semiconductor transition like behavior of naphthalene-doped single wall carbon nanotube bundles. Faraday Discuss. 173, 145156 (2014).CrossRefGoogle ScholarPubMed
Li, C., Thostenson, E.T., and Chou, T-W.: Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites. Appl. Phys. Lett. 91, 223114 (2007).CrossRefGoogle Scholar
Ma, Y., Cheung, W., Wei, D., Bogozi, A., Chiu, P.L., Wang, L., Pontoriero, F., Mendelsohn, R., and He, H.: Improved conductivity of carbon nanotube networks by in situ polymerization of a thin skin of conducting polymer. ACS Nano 2, 11971204 (2008).CrossRefGoogle ScholarPubMed
Yang, S.B., Kong, B-S., Jung, D-H., Baek, Y-K., Han, C-S., Oh, S-K., and Jung, H-T.: Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3, 13611373 (2011).CrossRefGoogle ScholarPubMed
Hecht, D., Hu, L., and Grüner, G.: Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks. Appl. Phys. Lett. 89, 133112 (2006).CrossRefGoogle Scholar
Chen, D.T.N., Chen, K., Hough, L.A., Islam, M.F., and Yodh, A.G.: Rheology of carbon nanotube networks during gelation. Macromolecules 43, 2048 (2010).CrossRefGoogle Scholar
Simien, D., Fagan, J.A., Luo, W., Douglas, J.F., Migler, K., and Obrzut, J.: Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano 2, 1879 (2008).CrossRefGoogle ScholarPubMed
Snider, R.M., Ciobanu, M., Rue, A.E., and Cliffel, D.E.: A multiwalled carbon nanotube/dihydropyran composite film electrode for insulin detection in a microphysiometer chamber. Anal. Chim. Acta. 609, 4452 (2008).CrossRefGoogle Scholar
Nguyen, L.H., Phi, T.V., Phan, P.Q., Vu, H.N., Nguyen Duc, C., and Fossard, F.: Synthesis of multi-walled carbon nanotubes for NH3 gas detection. Phys. E 37, 5457 (2007).CrossRefGoogle Scholar
Xu, H., Zheng, Q., Yang, P., Liu, J., and Jin, L.: Sensitive voltammetric detection of trace heavy metals in real water using multi-wall carbon nanotubes/nafion composite film electrode. Chin. J. Chem. 29, 805812 (2011).CrossRefGoogle Scholar
Grätzel, M.: Photoelectrochemical cells. Nature 414, 338344 (2001).CrossRefGoogle ScholarPubMed
Trancik, J.E., Barton, S.C., and Hone, J.: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982987 (2008).CrossRefGoogle ScholarPubMed
Noureldine, D., Shoker, T., Musameh, M., and Ghaddar, T.H.: Investigation of carbon nanotube webs as counter electrodes in a new organic electrolyte based dye sensitized solar cell. J. Mater. Chem. 22, 862869 (2012).CrossRefGoogle Scholar
Kavan, L.: Exploiting nanocarbons in dye-sensitized solar cells. Top. Curr. Chem. 348, 5393. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes, Marcaccio, M. and Paolucci, F. eds. (Springer, Berlin Heidelberg, Germany, 2014).CrossRefGoogle Scholar
Alam, M.J. and Cameron, D.C.: Optical and electrical properties of transparent conductive ITO thin films deposited by sol-gel process. Thin Solid Films 377378, 455459 (2000).CrossRefGoogle Scholar
Stotter, J., Show, Y., Wang, S., and Swain, G.: Comparison of the electrical, optical, and electrochemical properties of diamond and indium tin oxide thin-film electrodes. Chem. Mater. 17, 48804888 (2005).CrossRefGoogle Scholar
Valentini, F., Amine, A., Orlanducci, S., Terranova, M.L., and Palleschi, G.: Carbon nanotube purification: Preparation and characterization of carbon nanotube paste electrodes. Anal. Chem. 75, 54135421 (2003).CrossRefGoogle ScholarPubMed
Maillaud, L., Zakri, C., Ly, I., Pénicaud, A., and Poulin, P.: Conductivity of transparent electrodes made from interacting nanotubes. Appl. Phys. Lett. 103, 263106 (2013).CrossRefGoogle Scholar
Broersma, S.: Rotational diffusion constant of a cylindrical particle. J. Chem. Phys. 32, 1626 (1960).CrossRefGoogle Scholar
Broersma, S.: Viscous force and torque constants for a cylinder. J. Chem. Phys. 74, 6989 (1981).CrossRefGoogle Scholar