Skip to main content Accessibility help

Transmission Electron Microscopy of Martensitic Transformation in Xe-implanted Austenitic 304 Stainless Steel

  • Guoqiang Xie (a1), Minghui Song (a1), Kazutaka Mitsuishi (a1) and Kazuo Furuya (a1)


Thin film specimens of austenitic 304 stainless steel implanted with 100 keV Xe ions at room temperature were investigated. Microstructural evolution and phase transformation were characterized and analyzed in situ with conventional and high-resolution transmission electron microscopy. The phase transformation in a sequence from austenitic γ face-centered cubic (fcc) to hexagonal close-packed (hcp), and then to a martensitic α body-centered cubic (bcc) structure was observed in the implanted specimens. The fraction of the induced α(bcc) phase increased with increasing Xe ion fluence. Orientation relationships between the induced α(bcc) phase and austenitic γ(fcc) matrix were determined to be (011)α//(111)γ and [111]α//[011]γ. The relationship was independent of the induced process of the martensitic phase transformation for austenitic 304 stainless steel specimen, in agreement with the Kurdjumov–Sachs (K-S) rule. It is suggested that the phase transformation is induced mainly by the formation of the highly pressurized Xe precipitates, which generate a large stress level in stainless steels.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1Mitsuishi, K., Kawasaki, M., Takeguchi, M. and Furuya, K.: Determination of atomic positions in a solid Xe precipitate embedded in an Al matrix. Phys. Rev. Lett. 82, 3082 (1999).
2Song, M., Mitsuishi, K. and Furuya, K.: Electron energy loss spectroscopy and energy-filtered imaging of Xe cavities embedded in Al at 423 and 473 K. Micron. 30, 129 (1999).
3Templier, C., Garem, H. and Rivier, J.P.: Transmission electron microscope study of xenon implanted into metals. Philos. Mag. A 53, 667 (1986).
4Gustiono, D., Sakaguchi, N., Shibayama, T., Kinoshita, H. and Takahashi, H.: Plane and cross-sectional TEM observation to clarify the effect of damage region by ion implantation on induced phase transformation in austenitic 301 stainless steel. Mater. Trans. 45, 65 (2004).
5Mottu, N., Vayer, M. and Erre, R.: Xe and Mo ion implantation on austenitic stainless steel: Structural modification. Surf. Coat. Technol. 183, 165 (2004).
6Xie, G.Q., Song, M., Mitsuishi, K. and Furuya, K.: Orientation of γ to α transformation in Xe-implanted austenitic 304 stainless steel. J. Nucl. Mater. 281, 80 (2000).
7Song, M., Mitsuishi, K. and Furuya, K.: Morphologies of metastable inert gas precipitates in aluminum observed with in situ HRTEM. Mater. Sci. Eng. A 304–306, 135 (2001).
8Sakamoto, I., Hayashi, N., Furubayashi, B. and Tanoue, H.: Ion-induced phase transformation in type 304 austenitic stainless steel by rare-gas ion irradiation. J. Appl. Phys. 68, 4508 (1990).
9Johnson, E.: Ion implantation induced martensitic transformations in metals. Defect Diffus. Forum 57–58, 241 (1988).
10Johnson, E., Johansen, A., Sarholt-Kristensen, L., Gråbæk, L., Hayashi, N. and Sakamoto, I.: Mossbauer and TEM study of martensitic transformations in ion implanted 17/7 stainless steel. Nucl. Instrum. Meth. B 19/20, 171 (1987).
11Hayashi, N., Sakamoto, I. and Takahashi, T.: Phase transformation in helium ion irradiated 316 stainless steel. J. Nucl. Mater. 128/129, 756 (1984).
12Johnson, E., Johansen, A., Sarholt-Kristensen, L., Roy-Poulsen, H. and Christensen, A.: Ion implantation and martensitic transformations in a 17/7 stainless steel. Nucl. Instrum. Meth. B 7/8, 212 (1985).
13Johnson, E., Littmark, U., Johansen, A. and Christodoulides, C.: Martensite transformation in antimony implanted stainless steel. Philos. Mag. A 45, 803 (1982).
14Wang, Q., Ogiso, H., Nakano, S., Akedo, J. and Ishikawa, H.: Martensitic transformation and the stress induced by 3 MeV ion implantation in an austenite stainless steel sheet. Nucl. Instrum. Meth. B 206, 118 (2003).
15Stahl, B., Kankeleit, E. and Walter, G.: Implantation induced phase formation in stainless steel. Nucl. Instrum. Meth. B 211, 227 (2003).
16Lopez, M.F., Gutierrez, A., Perez, F.J., Hierro, M.P. and Pedraza, F.: Soft x-ray absorption spectroscopy study of the effects of Si, Ce, and Mo ion implantation on the passive layer of AISI 304 stainless steel. Corros. Sci. 45, 2043 (2003).
17Gustiono, D., Sakaguchi, N., Shibayama, T., Kinoshita, H. and Takahashi, H.: Nano-scale phase transformation in Ti-implanted austenitic 301 stainless steel. J. Electron Microsc. 52, 449 (2003).
18Perez, F.J., Hierro, M.P., Gomez, C., Martinez, L. and Viguri, P.G.: Ion implantation as a surface modification technique to improve localized corrosion of different stainless steels. Surf. Coat. Technol. 155, 250 (2002).
19Johnson, E.: Martensitic transformations in ion implanted stainless steels, in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J.A., Børgesen, P., Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 759.
20Nishiyama, Z.: Martensitic Transformations (Academic Press, New York, 1978).
21Fayeulle, S., Treheux, D. and Esnouf, C.: TEM characterization of a nitrogen implanted austenitic stainless steel. Appl. Surf. Sci. 25, 288 (1986).
22Furuya, K., Piao, M., Ishikawa, N. and Saito, T.: High resolution transmission electron microscopy of defect clusters in aluminum during electron and ion irradiation at room temperature, in Microstructure Evolution During Irradiation, edited by Robertson, I.M., Was, G.S., Hobbs, L.W., and de la Rubia, T. Diaz (Mater. Res. Soc. Symp. Proc. 439, Pittsburgh, PA, 1997), p. 331.
23Ziegler, J.F., Biersack, J.P. and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).
24Reed, R.P.: The spontaneous martensitic transformations in 18%Cr, 8%Ni steels. Acta Metall. 10, 865 (1962).
25Lagneborg, R.: The martensite transformation in 18%Cr–8%Ni steels. Acta Metall. 12, 823 (1964).
26Kumar, B. Ravi, Singh, A.K., Das, S. and Bhattacharya, D.K.: Cold rolling texture in AISI 304 stainless steel. Mater. Sci. Eng. A 364, 132 (2004).
27Grigull, S.: Tensile deformation induced texture transformation in austenitic stainless steel. Text. Microstruct. 35, 153 (2003).
28Mangonon, P.L. and Thomas, G.: The martensite phases in 304 stainless steel. Metall. Trans. 1, 1577 (1970).
29Venables, J.A.: The martensitic transformation in stainless steel. Philos. Mag. 7, 35 (1962).
30Cina, B.: A transitional h.c.p. phase in the γ→α transformation in certain Fe-base alloys. Acta Metall. 6, 748 (1958).
31Song, M., Xie, G.Q., Mitsuishi, K., and Furuya, K.: A metastable hcp phase in transformation from γ to α phase induced by ion implantation in austenitic 304 stainless steel. (unpublished).
32Johnson, E., Grabek, L., Johansen, A., Sarholt-Kristensen, L., Borgesen, P., Scherzer, B.M.U., Hayashi, N. and Sakamoto, I.: Martensitic transformations in 304 stainless steel after implantation with helium, hydrogen and deuterium. Nucl. Instrum. Meth. B 39, 567 (1989).
33Ronchi, C.: Extrapolated equation of state for rare gases at high temperatures and densities. J. Nucl. Mater. 96, 314 (1981).
34Novak, C.J.: Handbook of Stainless Steels (McGraw-Hill, New York, 1977).


Related content

Powered by UNSILO

Transmission Electron Microscopy of Martensitic Transformation in Xe-implanted Austenitic 304 Stainless Steel

  • Guoqiang Xie (a1), Minghui Song (a1), Kazutaka Mitsuishi (a1) and Kazuo Furuya (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.