Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T14:52:35.037Z Has data issue: false hasContentIssue false

Transmission electron microscopic studies on an initial stage in the conversion process from α-tricalcium phosphate to hydroxyapatite

Published online by Cambridge University Press:  31 January 2011

Masato Tamai
Affiliation:
Graduate School of Science and Technology, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Toshiyuki Isshiki
Affiliation:
Department of Electronics and Information Science, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Koji Nishio
Affiliation:
Department of Electronics and Information Science, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Mitsuhiro Nakamura
Affiliation:
Graduate School of Science and Technology, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Atsushi Nakahira
Affiliation:
Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Hisamitsu Endoh
Affiliation:
Department of Electronics and Information Science, Kyoto Institute of Technology, Gosho-kaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
Get access

Abstract

The microstructural changes in the initial stage of a conversion process of α-tricalcium phosphate [α-Ca3(PO4)2] (α-TCP) to hydroxyapatite [Ca10(PO4)6(OH)2] (HAp) by the hydrolysis method were investigated by transmission electron microscopy (TEM). To investigate the microstructural changes that take place during the conversion process, we prepared two types of α-TCP specimens for TEM: α-TCP powder and sintered α-TCP thin film. According to our results, the microstructural changes can be summarized as follows. At first, the surface of the α-TCP was covered with an amorphous calcium phosphate layer, resulting from hydration or the dissolution of α-TCP. Subsequently, the nucleation of HAp occurred on the amorphous layer, and then dendritic structures appeared on the layer. Thereafter, the dendritic structures would grow into needlelike fine HAp crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Suchanek, W.L. and Yoshimura, M., J. Am. Ceram Soc. 81, 765 (1998).CrossRefGoogle Scholar
2.Tamai, M., Miki, S., Pezzotti, G., and Nakahira, A., J. Ceram. Soc. Jpn. 108, 915 (2000).CrossRefGoogle Scholar
3.Suchanek, W.L., Yashima, M., Kakihana, M., and Yoshimura, M., J. Am. Ceram. Soc. 80, 2805 (1997).CrossRefGoogle Scholar
4.Matsuda, N., Kaji, F., and Watanabe, M., Phosph. Res. Bull. 6, 345 (1996).CrossRefGoogle Scholar
5.Verges, M.A., Gonzalez, C.F., and Gallego, M.M.. J. Eur. Ceram. Soc. 18, 1245 (1998).CrossRefGoogle Scholar
6.Lie, H.S., Chin, T.S., Lai, L.S., Chiu, S.Y., Chung, K.H., Chang, C.S., and Lui, M.T.. Ceram. Int. 23, 19 (1997).CrossRefGoogle Scholar
7.Kanazawa, T., Inorganic Phosphate Chemistry, Kodansha Scientific (1985).Google Scholar
8.Monma, H. and Kanazawa, K., J.Ceram. Soc. Jpn. 86, 73 (1978).Google Scholar
9.Monma, H., Ueno, S., and Kanazawa, K., J. Chem. Tech. Biotechnol. 31, 15 (1981).CrossRefGoogle Scholar
10.Monma, H. and Kanazawa, T., J. Ceram. Soc. Japan. 84, 209 (1976).Google Scholar
11.Sakamoto, K., Nakahira, A., Okazaki, M., Ichihara, J., Inoue, M., and Yamaguch, S., in Organic/Inorganic Hybrid Materials, edited by Laine, R.M., Sanchez, C., Brinker, C.J., and Giannelis, E. (Mater. Res. Soc. Symp. Proc. 519, Warrendale, PA, 1998), pp. 407411.Google Scholar
12.Nakahira, A., Sakamoto, K., Yamaguchi, S., Kaneno, M., Takeda, S., and Okazaki, M., J. Am. Ceram. Soc. 82, 2029 (1999).CrossRefGoogle Scholar
13.Nakahira, A., Tami, M., Sakamoto, K., and Yamaguch, S., J. Ceram. Soc. Jpn. 108, 99 (2000).CrossRefGoogle Scholar
14.Eanes, E.D., Gillessen, I.H., and Posner, A.S., Nature 23, 365 (1965).CrossRefGoogle Scholar
15.Eanes, E.D., Termine, J.D., and Nylen, M.U., Calicif. Tiss. Res. 12, 143 (1973).CrossRefGoogle Scholar
16.Christoffersen, J., Christoffersen, M.R., Kibalczyc, W., and Andersen, F.A., J. Crystal Growth 94, 767 (1989).CrossRefGoogle Scholar
17.Boskey, A.L. and Posner, A.S., J. Phys. Chem. 77, 2313 (1973).CrossRefGoogle Scholar
18.Eanes, E.D. and Posner, A.S.. Trans. N.Y. Acad. Sci. 28, 233 (1965).CrossRefGoogle Scholar
19.Clement, R.R., Macipe, A.L., Morales, J.G., Burgues, J.T., and Castano, V.M., J. Eur. Ceram. Soc. 18, 1351 (1998).CrossRefGoogle Scholar
20.Onuma, K. and Ito, A., Chem. Mater. 10, 3346 (1998).CrossRefGoogle Scholar
21.Kanzaki, N., Treboux, G., Onuma, K., Tsutsumi, S., and Ito, A.. Biomaterials 22, 2921 (2001).CrossRefGoogle Scholar
22.Treboux, G., Layrolle, P., Kanzaki, N., Onuma, K., and Ito, A., J. Am. Chem. Soc. 122, 8323 (2000).CrossRefGoogle Scholar